

2019 Mathematics of Mechanics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Advanced Higher Mathematics of Mechanics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{4/5}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

(q) Any rounded answer should be accurate to three significant figures (or one decimal place for angles given in degrees) unless otherwise stated. If an answer differs due to rounding or prior rounding the candidate may be penalised. Only penalise one mark in any question.

Marking instructions for each question

Qu	estion	Generic scheme	Illustrative scheme	Max mark
1.		 ¹ use impulse = change in momentum ² calculate final velocity ³ calculate magnitude of velocity ⁴ calculate direction of velocity 	• ¹ 4 v -4(3 i +2 j) = (6 i + j) • ² v = $\frac{18i+9j}{4} = \frac{9}{2}i + \frac{9}{4}j$ • ³ $ \mathbf{v} = \sqrt{\left(\frac{9}{2}\right)^2 + \left(\frac{9}{4}\right)^2} = 5.03$ • ⁴ $\tan^{-1}\left(\frac{9}{4} \div \frac{9}{2}\right) = 26.6^{\circ}$	4
	cept 153.4	4° rved Responses:		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
2.	(a)	 •¹ start to use the product rule with one term correct •² complete differentiation 	• $1 \times e^{-3x}$ or $-3xe^{-3x}$ • $e^{-3x} - 3xe^{-3x}$	3
Note		• ³ substitute $x = -1$	• ³ $4e^{3}$	
note	5.			
Com	monly O	bserved Responses:		
	(b)	 ⁴ start differentiation with evidence of use of quotient rule with denominator and one term of numerator correct ⁵ complete differentiation 	• ⁴ $\frac{3(2t+1)^2 \dots}{((2t+1)^2)^2}$ or $\frac{\dots - 3t(2(2t+1)\times 2)}{((2t+1)^2)^2}$ • ⁵ $\frac{3(2t+1)^2 - 3t(2(2t+1)\times 2)}{((2t+1)^2)^2}$	3
		• ⁶ simplify answer	• ⁶ $\frac{3(1-2t)}{(2t+1)^3}$	
2. •	⁶ accept ⁶ is not a	$\frac{3-6t}{(2t+1)^3}$ available for a candidate who produces for bserved Responses:	urther incorrect simplification.	
Alter	native s	olution for (b) - Product rule		
		• ⁴ start differentiation with evidence of use of product rule with one term correct	• ⁴ $3(2t+1)^{-2}$ or $-3t(2(2t+1)^{-3} \times 2)$	
		• ⁵ complete differentiation	• ⁵ $3(2t+1)^{-2} - 3t(2(2t+1)^{-3} \times 2)$ • ⁶ $\frac{3(1-2t)}{(2t+1)^{3}}$	
		• ⁶ simplify answer	(2t+1)	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
3.		• ¹ integrate both components	•1 $4t + c_1$ and $\frac{t^2}{2} + t + c_2$	4
		• ² evaluate constant(s) of integration	• ² $c_1 = c_2 = 0$ as boat starts at origin	
		• ³ calculate displacement after 10 seconds	• ³ 40i + 60j	
		•4 find distance and state if within range.	•4 72·1 Yes, it is within range	
Note: If cor		ntegration are omitted at •1, award •1 b	ut •² is unavailable	
Comr	monly Obse	erved Responses:		
4.		 use maximum speed and acceleration in appropriate formulae 	• ¹ 15 = $a\omega$ and 60 = $a\omega^2$	5
		$ullet^2$ state values of a and ω	$\bullet^2 \omega = 4$ $a = \frac{15}{4}$	
		 ³ derive or state equation for velocity at an instant 	• ³ $a\omega\cos\omega t$	
		 ⁴ substitute to give value of velocity 	• ⁴ -2·18	
		• ⁵ interpret velocity	 ⁵ particle is moving in opposite direction to original movement 	
Note : 1. • ⁵		ble for a positive answer at \bullet^4	1	<u> </u>

Commonly Observed Responses:

Award •³ for
$$x = \frac{15}{4} \sin(4 \times 2) = 3 \cdot 71$$
 and $v^2 = 4^2 \left(\left(\frac{15}{4} \right)^2 - 3 \cdot 71^2 \right)$

Subsequently, \bullet^4 can only be awarded for selecting the negative value with appropriate justification

Q	Question		Generic scheme		Illustrative scheme	Max mark
5.			• ¹ state auxiliary equation		• $m^2 - 3m + 2 = 0$	5
			• ² solve auxiliary equation and general solution	state	• ² $y = Ae^x + Be^{2x}$	
			• ³ differentiate general solutio	n	• ³ $\frac{dy}{dx} = Ae^x + 2Be^{2x}$	
			 ⁴ substitute values into general solution and derivative to ob 2 equations in A and B 		$ 4^{4} = A + B $ 3 = A + 2B	
			• ⁵ solve for A and B and state solution		• ⁵ $y = -e^x + 2e^{2x}$	
	=0		st appear for \bullet^1 to be awarded d not appear at \bullet^2 , but must app	bear in	the final answer for $ullet^5$ to be awarded	
Com	monly	Obse	rved Responses:			
6.	(a)		• ¹ take moments about support	• ¹ 10	$g \times 4 + 5g \times 1 - 12g \times 2$	3
			• ² find magnitude of turning effect	• ² 45	g - 24g = 21g	
			• ³ interpret answer	•3 ant	ticlockwise	
	(b)		• ⁴ take moments about any point		g(4-x)+5g(1-x) or 0gx+12g(x+2)	3
			 ⁵ equate to moments in opposite direction 	● ⁵ 10	g(4-x)+5g(1-x)=30gx+12g(x+2)	
			• ⁶ calculate required distance	• ⁶ $\frac{21}{57}$	or 0 · 368	
Note • ² A	es: ccept 2	206		•		
Alter	rnative	solu	tion for (b)			
			 ⁴ calculate total mass and start to take moments about A 	•4 57	<i>x</i> =	
			• ⁵ complete moments about A	•5 57.	$x = 5 \times 3 + 12 \times 6 + 30 \times 4$	
			• ⁶ calculate required distance	$\bullet^6 x =$	$= 3 \cdot 632 \Longrightarrow 0 \cdot 368$	

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
7.			• ¹ begin to differentiate log function	$\bullet^1 \frac{1}{(\sec 2t + \tan 2t)} \dots$	4
			• ² differentiate either trig term	• ² $2 \sec 2t \tan 2t$ or $2 \sec^2 2t$	
			• ³ complete differentiation	$\bullet^3 \frac{2 \sec 2t \tan 2t + 2 \sec^2 2t}{(\sec 2t + \tan 2t)}$	
			• ⁴ simplify	• ⁴ $2 \sec 2t$	
	cept -	cos Zt	rved Responses:		
8.				$1 \int_{-\infty}^{1} (z - z)^{\frac{1}{2}} z$	5
			• ¹ set up integral	• $\int 2t(2t+1)^2 dt$	
			• ² begin integration by parts	• $\int 2t (2t+1)^{\frac{1}{2}} dt$ • $2t \times \frac{(2t+1)^{\frac{3}{2}}}{\frac{3}{2} \times 2} - \dots$	
			• ³ complete integration and include constant of integration	• ³ $2t \times \frac{(2t+1)^{\frac{3}{2}}}{\frac{3}{2} \times 2} - \frac{2}{3} \times \frac{(2t+1)^{\frac{5}{2}}}{\frac{5}{2} \times 2} + c$	
			• ⁴ determine value of <i>c</i> from initial conditions	$\bullet^4 \ c = \frac{2}{15}$	
			• ⁵ determine value of velocity	$\bullet^5 v = 39 \cdot 7$	
fo	lterna or corr	rect li		imits of integration. In this case • ⁴ is a to be awarded	warded

2. ...dt must appear somewhere in the working for \bullet^1 to be awarded

Commonly Observed Responses:

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
9.		• ¹ resolve forces parallel to the plane	• ¹ $F\cos\theta$ + 25 = $mg\sin 40$	5		
		• ² resolve forces perpendicular to the plane	• ² $F\sin\theta + 30 = mg\cos 40$			
		• ³ use equations from • ¹ and • ² to eliminate F	• ³ $\frac{\sin\theta^{\circ}}{\cos\theta^{\circ}} = \frac{5g\cos 40 - 30}{5g\sin 40 - 25}$			
		$ullet^4$ solve to find $ heta$	• ⁴ 49·2°			
		• ⁵ substitute value for θ into either equation for <i>F</i> and solve	● ⁵ 9.95			
Note 1. F		t 9.94 or 9.96				
Com	monly Obse	erved Responses:				
10.		• ¹ start to differentiate using product rule	• ¹ $2xe^{2y}$ or $2x^2e^{2y}\frac{dy}{dx}$	4		
		• ² complete differentiation	• ² $3\frac{dy}{dx} + 2xe^{2y} + 2x^2e^{2y}\frac{dy}{dx} = 0$			
		$\mathbf{y} = 0$	• ³ $x=3$			
		• ⁴ evaluate gradient	• $-\frac{2}{7}$ or -0.286			
Note	Notes:					
Comi	monly Obse	erved Responses:				

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
11.		• ¹ use Newton's second law with substitution to set up equation	$\bullet^1 - 0 \cdot 2v^2 = 2v \frac{dv}{dx}$	5.		
		• ² separate variables and set up integration	• ² $\int -0.1 dx = \int \frac{1}{v} dv$			
		• ³ integrate with constant of integration (or use of limits)	$\bullet^3 -0\cdot1x + c = \ln\left v\right $			
		• ⁴ find constant of integration	• ⁴ $c = \ln 5$			
		 ⁵ substitute and rearrange equation for v 				
2. Do 3. Alt	Notes: 1. If c is omitted at \bullet^3 , then \bullet^3 , \bullet^4 and \bullet^5 are not available. 2. Do not withhold \bullet^3 or \bullet^5 for the omission of the modulus sign 3. Alternative method for $\bullet^3 \bullet^4 \bullet^5$ could involve using limits of integration 4. for \bullet^1 accept $-0.2v^2 = 2\frac{dv}{dt}$. All marks are still available for appropriate working.					
Comi	monly O	bserved Responses:				

Question	Generic scheme	Illustrative scheme	Max mark
12. (a)	• ¹ resolve forces vertically	• ¹ $R\cos\theta^\circ + \mu R\sin\theta^\circ = m\mathbf{g}$	5
	 ² apply Newton's 2nd law for horizontal forces 	• ² $R\sin\theta^{\circ} - \mu R\cos\theta^{\circ} = \frac{mv^2}{r}$	
	\bullet^3 substitute and eliminate <i>R</i>	• ³ $\frac{\sin\theta^{\circ} - \mu\cos\theta^{\circ}}{\cos\theta^{\circ} + \mu\sin\theta^{\circ}} = \frac{v^2}{gr}$	
	• ⁴ substitute in expression for v and use trig identity for tan θ°	• ⁴ $\frac{\tan\theta^{\circ} - \mu}{1 + \mu \tan\theta^{\circ}} = \frac{1}{100}$	
	$ullet^5$ rearrange to required answer	• ⁵ 100 tan θ° - 100 μ = 1+ μ tan θ° μ tan θ° + 100 μ = 100 tan θ° - 1	
		$\mu = \frac{100 \tan \theta^{\circ} - 1}{\tan \theta^{\circ} + 100}.$	
	ailable for candidates who write down the Observed Responses:	correct expression without justification	n
(b)	• ⁶ resolve forces for friction acting down the slope	• $R\cos\theta^{\circ} - \mu R\sin\theta^{\circ} = mg$ $R\sin\theta^{\circ} + \mu R\cos\theta^{\circ} = \frac{mv^2}{r}$	4
	• ⁷ substitute and eliminate R	• ⁷ $\frac{\sin\theta^{\circ} + \mu\cos\theta^{\circ}}{\cos\theta^{\circ} - \mu\sin\theta^{\circ}} = \frac{v^2}{gr}$	
	• ⁸ find maximum speed	• ⁸ $v = 30 \cdot 3$	
	 ⁹ find minimum speed and state conclusion 	• ⁹ 2·8 and motorcyclist will not slip.	
Notes: 1. Accept ● ⁷	stated immediately from (a) as understand	ding of slipping up the slope	
Commonly C	bserved Responses:		
(c)	\bullet^{10} state reason with justification	• ¹⁰ eg worn tyres - alter value of coefficient of friction	1
Notes:	1	1	L
1. ● ¹⁰ cannot	be awarded for any reference to mass		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
13.	(a)		• ¹ resolve perpendicular to the slope	• ¹ $R = mg\cos\theta$	4
			• ² apply Newton's second law parallel to the slope	$\bullet^2 -\mu R - mg\sin\theta = ma$	
			• ³ find expression for acceleration	• ³ $a = -g(\mu\cos\theta + \sin\theta)$	
			$ullet^4$ substitute into equation of	$0 = V^{2} + 2(-g(\mu\cos\theta + \sin\theta))s$	
			motion and complete	$\int_{0}^{0} s = \frac{V^2}{2g(\mu\cos\theta + \sin\theta)}$	
Note	s:	I			•
Com	monly	v Obse	erved Responses:		
	(b)		 ⁵ find work done against friction in terms of given variables 	• ⁵ $W = \mu mg \cos \theta \times \frac{V^2}{2g(\mu \cos \theta + \sin \theta)}$	3
			 ⁶ substitute for Wand start simplification 	• ⁶ $\frac{1}{8} = \frac{\mu \cos \theta}{2(\mu \cos \theta + \sin \theta)}$	
			$ullet^7$ state expression for μ	• ⁷ $\mu = \frac{1}{3} \tan \theta$	
Note	-	1			1
• ⁷ a	ccept	$\mu = \frac{3}{3}$	$\frac{\sin\theta}{\cos\theta}$		
Com	monly	v Obse	erved Responses:		

Question	Generic scheme	Illustrative scheme Max mark
Alternative solu	itions for 13. (a)	
	• ¹ state force acting down slope	• ¹ $F = mg\sin\theta + \mu R$
	• ² find work done against friction to travel <i>s</i> metres up slope	• ² $(mg\sin\theta + \mu R)s$
	• ³ resolve perpendicular to slope and substitute for <i>R</i>	• ³ $\frac{R = mg\cos\theta}{(mg\sin\theta + \mu mg\cos\theta)s}$
	• ⁴ use work energy principle to find expression for <i>s</i>	$\int_{e^4}^{4} \frac{1}{2} mV^2 = mg(\sin\theta + \mu\cos\theta)s$ $s = \frac{V^2}{2g(\sin\theta + \mu\cos\theta)}$
	• ¹ find work done against gravity	• ¹ $m\mathbf{g} \times s \sin \theta$
	• ² find work done against friction	• ² $\mu mg \times s \cos \theta$
	• ³ use work/energy principle	• ³ $\frac{1}{2}mV^2 = mgs\sin\theta + \mu mgs\cos\theta$
	• ⁴ find expression for <i>s</i>	• ⁴ $s = \frac{V^2}{2g(\sin\theta + \mu\cos\theta)}$

Q	Question		Generic scheme	Illustrative scheme	Max mark
14.	(a)		• ¹ consider energy at A	$\bullet^1 E_k + E_p = \frac{1}{2}mu^2 + 0$	4
			 ² consider energy at P, and substitute for h 	• ² $E_k + E_p = \frac{1}{2}mv^2 + mgh$ = $mgr(1 - \cos\theta)$	
			• ³ use conservation of energy	$\bullet^3 \frac{1}{2}mu^2 = m\mathbf{g}r(1-\cos\theta)$	
			• ⁴ substitute and calculate angle	$ \mathbf{e}^{4} \begin{array}{c} 6 \cdot 125 = 3 \cdot 92(1 - \cos \theta) \\ \theta = 124 \cdot 2^{\circ} \end{array} $	
Note	s:				
1. 2. 3.	● ¹ an		hay be implied by \bullet^3	nust include $E_k + E_p$ or "energy at A" or	similar
Comi	monly	Obse	erved Responses:		
	(b)		• ⁵ state requirements for complete circle	• ⁵ $v > 0$ when angle = 180°	3
			 ⁶ set up inequality with initial kinetic energy greater than final potential energy 	$\bullet^6 \frac{1}{2}mu^2 > 2mgr$	
			• ⁷ solve for u	• ⁷ $u > \sqrt{\frac{8g}{5}}$	
Note	s:			L	1
1. ● ⁵	may b	oe imp	olied by • ⁶		
			be awarded for equalities		
	acce	•	_		
4. ● ⁷	do n	ot acc	ept $u \ge 3.96$ or $u \ge \sqrt{\frac{8g}{5}}$		
Com	monly	Obse	erved Responses:		
	(c)		• ⁸ state assumption	• ⁸ ball is of the same radius as tubing or does not spin or ball is smooth.	1
Note	s:				1
Com	monly	[,] Obse	erved Responses:		

Q	Question		Generic scheme	Illustrative scheme	Max mark		
15.	(a)		• ¹ state condition for maximum height	• ¹ $v = 0$ stated or implied by • ²	3		
			• ² find vertical component of initial velocity and substitute into vertical equation of motion	• ² $0 = u^2 \sin^2 \theta - 2 \times g \times s$			
			• ³ introduce inequality and complete proof	• ³ $\sin\theta < \frac{\sqrt{2 \times g \times 3}}{u}$ $\sin\theta < \frac{\sqrt{6g}}{u}$			
	Notes: 1. Only accept $\sin\theta = \frac{\sqrt{2gs}}{u}$ leading to inequality if further explanation is given						
Alter	Alternative solution for (a)						
			• ¹ state expression for height	• ¹ $ut\sin\theta - \frac{1}{2}gt^2$			
			• ² state expression for time and start substitution	• ² $t = \frac{u \sin \theta}{g}$ $u\left(\frac{u \sin \theta}{g}\right) \sin \theta - \frac{1}{2}g\left(\frac{u \sin \theta}{g}\right)^2$			
			• ³ introduce inequality and complete proof	• ³ < 3 and working leading to $\sin \theta < \sqrt{\frac{6g}{u}}$			

15. (b) (i) • • • state time of flight • • $\frac{2u\sin\theta}{g}$ • $\frac{2u^2\sin\theta\cos\theta}{g}$ • $\frac{2u^2\sin\theta\cos\theta}{g}$ • $\frac{2u^2\sin\theta\cos\theta}{g}$ • $\frac{2u^2\sin\theta\cos\theta}{g}$ • $\frac{2u^2\sin\theta\cos\theta}{g}$ • $\frac{2u^2-6g}{u}$ • $\frac{\sqrt{u^2-6g}}{u}$ • $\frac{\sqrt{u^2-6g}}{u}$ • $\frac{\sqrt{u^2-6g}}{u}$ • $\frac{\sqrt{u^2-6g}}{u}$ Alternative solution for (b) (i) • $\frac{\sqrt{u^2-6g}}{g}$ • $\frac{\sqrt{u^2-6g}}{u}$ • \frac	Q	Question		Generic scheme	Illustrative scheme	Max mark
• ⁶ obtain expression for $\cos \theta$ • ⁶ $\cos \theta = \frac{\sqrt{u^2 - 6g}}{u}$ • ⁷ substitute expressions for $\sin \theta$ and $\cos \theta$ into expression for range • ⁸ simplify and complete • ⁸ valid working leading to $R = 12\sqrt{\frac{u^2 - 6g}{6g}}$ Alternative solution for (b) (i) • ⁴ substitute into 2 equations of motion • ⁵ combine equations to eliminate sin θ • ⁶ find expression for total time of flight • ⁷ $u \cos \theta = \sqrt{u^2(1 - \sin^2 \theta)}$ $u \cos \theta = \sqrt{u^2 - 6g}$ $u \cos \theta = \sqrt{u^2 - 6g}$ • ⁸ use expression for range and simplify as required • ⁸ Range = $\frac{12}{\sqrt{6g}} u \cos \theta$	15.	(b)	(i)	• ⁴ state time of flight		5
•7substitute expressions for sin θ and cos θ into expression for range•7 $\frac{2u^2}{g} \times \frac{\sqrt{6g}}{u} \times \frac{\sqrt{u^2 - 6g}}{u}$ •8simplify and complete•8valid working leading to $R = 12\sqrt{\frac{u^2 - 6g}{6g}}$ Alternative solution for (b) (i)•4 $3 = \frac{(u+v)t}{2}$ $6 = u \sin \theta \times t$ •5combine equations to eliminate $\sin \theta$ •5 $\frac{6}{ut} = \frac{\sqrt{6g}}{u}$ •6find expression for total time of flight•6Total time of flight = $\frac{12}{\sqrt{6g}}$ •7find expression for horizontal component of velocity•7 $u\cos \theta = \sqrt{u^2(1-\sin^2 \theta)}$ $u\cos \theta = \sqrt{u^2 - 6g}$ •8use expression for range and simplify as required•8Range = $\frac{12}{\sqrt{6g}}u\cos \theta$					• ⁵ $\frac{2u^2\sin\theta\cos\theta}{g}$	
Alternative solution for (b) (i) • ³ simplify and complete • ³ simplify and complete • ³ valid working leading to $R = 12\sqrt{\frac{u^2 - 6g}{6g}}$ Alternative solution for (b) (i) • ⁴ substitute into 2 equations of motion • ⁵ combine equations to eliminate sin θ • ⁵ combine equations to eliminate sin θ • ⁶ find expression for total time of flight • ⁷ find expression for horizontal component of velocity • ⁸ use expression for range and simplify as required • ⁸ Range = $\frac{12}{\sqrt{6g}}ucos\theta$				$ullet^6$ obtain expression for $\cos heta$	• ⁶ $\cos\theta = \frac{\sqrt{u^2 - 6g}}{u}$	
Alternative solution for (b) (i) $R = 12\sqrt{\frac{u^2 - 6g}{6g}}$ Alternative solution for (b) (i) \bullet^4 substitute into 2 equations of motion \bullet^4 $3 = \frac{(u+v)t}{2}$ $6 = u \sin \theta \times t$ \bullet^5 combine equations to eliminate $\sin \theta$ \bullet^5 $\frac{6}{ut} = \frac{\sqrt{6g}}{u}$ \bullet^5 $\frac{6}{ut} = \frac{\sqrt{6g}}{u}$ \bullet^6 find expression for total time of flight \bullet^6 Total time of flight $= \frac{12}{\sqrt{6g}}$ \bullet^7 $u \cos \theta = \sqrt{u^2(1-\sin^2 \theta)}$ $u \cos \theta = \sqrt{u^2 - 6g}$ $u \cos \theta = \sqrt{u^2 - 6g}$ \bullet^8 use expression for range and simplify as required \bullet^8 Range $= \frac{12}{\sqrt{6g}}u \cos \theta$				and $\cos heta$ into expression for	• ⁷ $\frac{2u^2}{g} \times \frac{\sqrt{6g}}{u} \times \frac{\sqrt{u^2 - 6g}}{u}$	
• ⁴ substitute into 2 equations of motion • ⁵ combine equations to eliminate $\sin \theta$ • ⁶ find expression for total time of flight • ⁷ find expression for horizontal component of velocity • ⁸ use expression for range and simplify as required • ⁴ $3 = \frac{(u+v)t}{2}$ $6 = u \sin \theta \times t$ • ⁵ $\frac{6}{ut} = \frac{\sqrt{6g}}{u}$ • ⁶ Total time of flight = $\frac{12}{\sqrt{6g}}$ • ⁷ $u \cos \theta = \sqrt{u^2 (1 - \sin^2 \theta)}$ $u \cos \theta = \sqrt{u^2 - 6g}$ • ⁸ Range = $\frac{12}{\sqrt{6g}} u \cos \theta$				• ⁸ simplify and complete		
motion • function • function • find expression for total time of flight • function • function	Alte	Alternative solution for (b) (i)				
				-	• ⁴ $3 = \frac{(u+v)t}{2}$ $6 = u\sin\theta \times t$	
• ⁷ find expression for horizontal component of velocity • ⁸ use expression for range and simplify as required • ⁸ use expression for range and					ut u	
component of velocity • ⁸ use expression for range and simplify as required • ⁸ Range = $\frac{12}{\sqrt{6g}}u\cos\theta$				-	• ⁶ Total time of flight = $\frac{12}{\sqrt{6g}}$	
• ⁸ use expression for range and simplify as required • ⁸ Range = $\frac{12}{\sqrt{6g}}u\cos\theta$					$u\cos\theta = \sqrt{u^2 - 6g}$	
$Range = \frac{12\sqrt{u^2 - 6g}}{\sqrt{6g}} = 12\sqrt{\frac{u^2 - 6g}{6g}}$						
					Range = $\frac{12\sqrt{u^2 - 6g}}{\sqrt{6g}} = 12\sqrt{\frac{u^2 - 6g}{6g}}$	
(ii) •° state constraint •° $u > \sqrt{6g}$			(ii)	• ⁹ state constraint	•9 $u > \sqrt{6g}$	1
Notes: Accept $u \ge \sqrt{6g}$, $u^2 \ge 6g$ or $u^2 > 6g$				$u^2 \ge 6g \text{ or } u^2 > 6g$		

Commonly Observed Responses:

Question		n	Generic scheme	Illustrative scheme	Max mark
16.	(a)		• ¹ calculate the angle for direct route	• ¹ $\tan \theta^{\circ} = \frac{800}{250}$ $\theta^{\circ} = 72 \cdot 6^{\circ}$	4
				$v_{r} = 2$ $v_{b} = 4$ $x^{\circ} \partial^{\circ}$ 250 800	
			• ² use sine rule	$\bullet^2 \frac{\sin x^\circ}{2} = \frac{\sin 72 \cdot 6^\circ}{4}$	
			• ³ determine angle inside velocity components triangle	• ³ $x = 28 \cdot 5$	
			• ⁴ interpret solution	• ⁴ angle to bank is $101 \cdot 1^{\circ}$ or $78 \cdot 9^{\circ}$	
	monly		or 78·8° erved Responses:		
	(b)	(i)	 ⁵calculate resultant speed before slowing 	• ⁵ $v_{\text{resultant}} = 4 \cdot 11$	3
			 ⁶calculate distance from A of rower after 60 seconds 	• ⁶ 247	
			 ⁷calculate remaining distance after slowing 	• ⁷ 591	
Alter	nativ	e solu	ition for (b) (i)		
			 ⁵set up distance triangle and use sine/cosine rule 	• ⁵ $\frac{x}{\sin 78 \cdot 8} = \frac{120}{\sin 28 \cdot 5} = \frac{240}{\sin 72 \cdot 6}$ or $x^2 = 120^2 + 240^2 - 2 \times 120 \times 240 \times \cos 78 \cdot 8$	
			• ⁶ calculate full or partial distance	• ⁶ 247 after 1 minute or 838 to B	
			• ⁷ calculate remaining distance	• ⁷ 591	
Note Acce	s: pt 592	for •	7		L
Com	monly	Obse	erved Responses:		

Question		on	Generic scheme	Illustrative scheme	Max mark
16.	(b)	(ii)	• ⁸ calculate the new angle with the river bank or angle marked <i>x</i>	• ⁸ 67·8° or 112·2° or 39·5	3
			 ⁹ calculate resultant velocity after slowing 	• 9 $v = 2.91 \text{ms}^{-1}$	
			• ¹⁰ calculate remaining and total times	• ¹⁰ t = 203 seconds, Total time = 263 seconds	
Note	es:				
Com	monly	y Obse	erved Responses:		
17.	(a)		• ¹ recognise form of integral and integrate correctly	• ¹ $\tan(e^t) + c$	1
Note cons		of inte	gration not required		
Com	monly	y Obse	erved Responses:		
	(b)		• ² recognise expression for velocity	$\bullet^2 v = e^t \sec^2(e^t)$	2
			• ³ explain why original	• ³ neither $\sec(e^t)$ nor e^t can ever	
			function cannot ever equal zero	equal zero, so product can never be zero and hence particle never at rest	
Note	es:	I	1	1	J
Com	monly	y Obse	erved Responses:		

[END OF MARKING INSTRUCTIONS]