2015 Applied Mathematics - Mechanics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Applied Mathematics - Mechanics Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Applied Mathematics - Mechanics - Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

These principles describe the approach taken when marking Advanced Higher Applied Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values/algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

Part Two: Marking Instructions for each Question

Section A

	tio	Expected Answer(s)	Max Mark	Additional Guidance
A	2	Acceleration: $\begin{array}{ll} s=300 \quad t= & u=0 \quad v=20 \quad a= \\ v^{2}=u^{2}+2 a s & v=u+a t \\ 400=600 a & 20=\frac{2}{3} t \\ a=\frac{2}{3} \mathrm{~ms}^{-1} & t=30 \mathrm{secs} \end{array}$ Deceleration: $\begin{array}{ll} s=\quad t=15 & u=20 \quad v=0 \quad a= \\ v=u+a t & v^{2}=u^{2}+2 a s \\ 0=20+15 a & 0=400-\frac{8}{3} s \\ a=\frac{-4}{3} \mathrm{~ms}^{-2} & \mathrm{~s}=150 \text { metres } \end{array}$ [Alternatively: Deceleration in half the time: $a=\frac{-4}{3} \mathrm{~ms}^{-2}$] Remaining distance at $20 \mathrm{~ms}^{-1}$ $\begin{aligned} & 5000-300-150=4550 \\ & t=\frac{4550}{20}=227 \cdot 5 \end{aligned}$ Total time: $227 \cdot 5+15+30=272 \cdot 5$ secs	5	M1: Use of stuva with substitution E2: Correct values of a and t Graphical approach: M1: Draw v/t graph and correctly interpret data to find acceleration E2: Correct values of a and t E3: Deceleration time and distance correct or state deceleration directly M4: Calculation of time for remaining distance at constant speed

	tio	Expected Answer(s)	$\begin{aligned} & \text { Max } \\ & \text { Mark } \\ & \hline \end{aligned}$	Additional Guidance
A	3	$\begin{aligned} & A P^{2}=10^{2}+24^{2} \\ & A P=26 \end{aligned}$ Extension in $A P$ and $P B=6 \mathrm{~cm}$ $E P E=\frac{\lambda x^{2}}{2 l}=\frac{25(0.06)^{2}}{2(0 \cdot 2)}=0.225$ Total $E P E=0.45$ $\begin{aligned} & K E=\frac{1}{2} m v^{2} \\ & \frac{1}{2}(0 \cdot 02) v^{2}=0.45 \\ & v=6.71 \mathrm{~ms}^{-1} \end{aligned}$ Note: For $T=\frac{\lambda x}{l}=7 \cdot 5$ allocate 1 mark For $F=m a: 2 T \cos \theta=m a \Rightarrow a=$ No further marks could be awarded if can	$2 \cdot 3 r$ late	M1: Find extension in string M2: Knowing to use EPE with substitution E3: Total $\mathrm{EPE}=45 \mathrm{~J}$ M4: Equating kinetic energy and EPE E5: Calculate speed ${ }^{2}$ allocate 2 marks s solution in this way.
	rna	olution: Differential Equations $\begin{aligned} & A P^{2}=10^{2}+24^{2} \\ & A P=26 \Rightarrow \text { extension in string }=12 \mathrm{~cm} \\ & F=\frac{\lambda x}{l} \Rightarrow m a=\frac{\lambda x}{l} \Rightarrow a=\frac{\lambda x}{l m} \\ & v \frac{d v}{d x}=\frac{\lambda}{l m} x \\ & \int_{0}^{v} v d v=\frac{\lambda^{2}}{l m} \int_{0}^{0.12} x d x \\ & \frac{v^{2}}{2}=\left[\frac{\lambda x^{2}}{2 l m}\right]_{0}^{0.12} \Rightarrow v=6.71 \mathrm{~ms}^{-1} \end{aligned}$	5	M1: Find extension in string M2: Use tension in string to find expression for acceleration M3: Set up differential equation M4: Separate variables with limits E5: Evaluate integral to find speed
		lution: Work/energy principle $\begin{aligned} & A P^{2}=10^{2}+24^{2} \\ & A P=26 \Rightarrow \text { extension in string }=12 \mathrm{~cm} \\ & \text { Work done }=\int_{0}^{0.12} F d x=\int_{0}^{0.12} T d x=\int_{0}^{0.12} \frac{\lambda}{l} x d x \\ & \int_{0}^{0.12} \frac{\lambda}{l} x d x=\left[\frac{\lambda x^{2}}{2 l}\right]_{0}^{0.12}=0.45 \mathrm{~J} \\ & \frac{1}{2} m v^{2}=0.45 \\ & v=6.71 \mathrm{~ms}^{-1} \end{aligned}$		M1: Find extension in string M2: State work done by string as an integral with limits E3: Evaluate integral M4: Work/energy principle E5: Evaluate speed

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	4	a	$\begin{aligned} & \uparrow \text { Equilibrium: } T=1800 g \\ & P=F v \quad \text { or } \quad F=\frac{P}{v} \\ & P=1800 g \times 4=70560 \approx 70 \cdot 6 \mathrm{~kW} \end{aligned}$	2	M1:state tension in cable and use relationship between Power, force and velocity E2: Value of power.
A	4	b	$\begin{aligned} & T-m g=m a \\ & T=1800(g+a) \\ & \uparrow=1800\left(9 \cdot 8+\frac{4}{7}\right) \\ & =18669 \mathrm{~N} \\ & P=F v \Rightarrow P_{\max }=F v_{\max } \\ & F v_{\max } 18669 \times 4=74676 \\ & \approx 74.7 \mathrm{~kW} \end{aligned}$	2	M1: Use $F=m a$ to find tension under acceleration E2: Value of maximum power
A	4	c	$\begin{aligned} \text { Height } & =\text { area under s/t graph } \\ \text { Height } & =\frac{1}{2}(7 \times 4)+(16 \times 4)+\frac{1}{2}(13 \times 4) \\ & =104 \text { metres } \end{aligned}$	2	M1: Method of area under s / t graph E2: Height of lift

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	5	a	$\begin{aligned} & \frac{G M m_{B}}{r^{2}}=\frac{m_{B} v_{B}^{2}}{r} \Rightarrow G M=r v_{B}^{2} \\ & \frac{G M m_{C}}{(2 r)^{2}}=\frac{m_{C} v_{C}^{2}}{2 r} \Rightarrow G M=2 r v_{c}^{2} \\ & \frac{v_{B}^{2}}{v_{c}^{2}}=2 \Rightarrow v_{B}^{2}=2 v_{c}^{2} \\ & v_{B}=\sqrt{2} v_{c} \\ & v_{B}=r \omega_{B} \quad v_{C}=2 r \omega_{C} \\ & v_{B}=\sqrt{2} v_{c} \\ & r \omega_{B}=\sqrt{2} \times 2 r \omega_{C} \\ & \omega_{B}=2 \sqrt{2} \omega_{C} \end{aligned}$	4	M1: Use of inverse Square Law of Gravitation for both orbits. E2: Equating expressions for GM and manipulation for answer M3: relationship between linear and angular momentum E4: Manipulation to give $\omega_{B}=2 \sqrt{2} \omega_{C}$
A	5	b	$\begin{aligned} & P_{B}=\frac{2 \pi}{\omega_{B}}=n \Rightarrow \omega_{B}=\frac{2 \pi}{n} \\ & \omega_{B}=2 \sqrt{2} \omega_{C} \\ & \frac{2 \pi}{n}=2 \sqrt{2} \omega_{C} \Rightarrow \omega_{C}=\frac{\pi}{n \sqrt{2}} \\ & P_{C}=\frac{2 \pi}{\omega_{C}}=\frac{2 \pi}{\frac{\pi}{n \sqrt{2}}}=2 \sqrt{2} n \text { days } \end{aligned}$	2	M1: Relationship between period and angular velocity with substitution E2: Calculation of period for Casper

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	8	a	$\begin{gathered} m g-m v^{2}=m v \frac{d v}{d x} \\ 3 g-0 \cdot 75 v^{2}=3 v \frac{d v}{d x} \\ g-0 \cdot 25 v^{2}=v \frac{d v}{d x} \\ \int d x=\int \frac{v}{g-0 \cdot 25 v^{2}} d v \\ x=-2 \ln \left\|g-0 \cdot 25 v^{2}\right\|+c \\ x=0, v=0 \rightarrow c=2 \ln g \\ \therefore x=-2 \ln \left\|g-0 \cdot 25 v^{2}\right\|+2 \ln g \\ x=2 \ln \left\|\frac{g}{g-0 \cdot 25 v^{2}}\right\| \\ v=5: x=2 \ln \left\|\frac{g}{g-6 \cdot 25}\right\|=2 \cdot 03 \text { metres } \end{gathered}$ Alternative for marks 3, 4 and 5: $\begin{aligned} & {[x]_{0}^{x}=\left[-2 \ln \left\|g-0 \cdot 25 v^{2}\right\|\right]_{0}^{5}} \\ & x=-2 \ln \|g-6 \cdot 25\|+2 \ln g \\ & x=2 \ln \left\|\frac{g}{g-6 \cdot 25}\right\| \\ & x=2 \ln \left\|\frac{g}{g-6 \cdot 25}\right\|=2 \cdot 03 \text { metres } \end{aligned}$ Note: $3 g-0.75 v^{2}=3 \frac{d v}{d t} 1^{\text {st }}$ mark awarded	5	M1: Use of $F=m a$ E2: Simplification and method of separating variables E3: Correct integration M4: Substitution to find value of c or use limits E5: Substitution for v to give displacement M3: use of definite integration with correct limits. E4: Simplification of log term E5: Evaluation of displacement

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	8	b	$\begin{aligned} & \text { Work done }=\int_{0}^{a} \boldsymbol{F} \cdot \boldsymbol{v} d t \\ & \boldsymbol{a}=2 t \mathbf{i} \rightarrow \boldsymbol{v}=t^{2} \mathbf{i}+\boldsymbol{c} \\ & t=0, v=0 \rightarrow \boldsymbol{v}=t^{2} \mathbf{i} \\ & \boldsymbol{F}=m \boldsymbol{a} \rightarrow \boldsymbol{F}=10 t \mathbf{i} \end{aligned}$ $\text { Work done }=\int_{0}^{a} F \cdot v d t=\int_{0}^{a} 10 t^{3} d t=\frac{5 a^{4}}{2}$ Work done by $P=$ change in energy: $\begin{aligned} & m g h-\frac{1}{2} m v^{2}=3 g(2 \cdot 03)-\frac{1}{2}(3)\left(5^{2}\right)=22 \cdot 2 J \\ & \int_{0}^{a} 10 t^{3} d t=22 \cdot 2 \\ & \rightarrow\left[\frac{5 t^{4}}{2}\right]_{0}^{T}=\frac{5 t^{4}}{2}=22 \cdot 2 \\ & a=1.73 \text { seconds } \end{aligned}$	5	M1: Statement for work done by a variable force and integration to find expression for v. M2: Use of $F=\mathrm{m} a$ and expression for work done M3: Equivalence of work and change in energy with substitution E4: Evaluation of change of energy E5: Equating answers and evaluating a

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	9	a i	A: $\begin{align*} & F=m a \\ & 0.03 g \sin 30^{\circ}-T=0.03 a \tag{i} \end{align*}$ B: \rightarrow Equilibrium $\begin{align*} & R_{B}=0 \cdot 02 g \cos 30^{\circ}=0 \cdot 170 \\ & F=m a \\ & 0 \cdot 02 g \sin 30^{\circ}+T-0 \cdot 5 R_{B}=0 \cdot 02 a \tag{ii} \end{align*}$ Equating expressions for T : $\begin{aligned} & 0 \cdot 03 g \sin 30^{\circ}-0 \cdot 03 a=0 \cdot 02 a+0 \cdot 085-0 \cdot 02 g \sin 30^{\circ} \\ & 0 \cdot 05 g \sin 30^{\circ}-0 \cdot 085=0 \cdot 05 a \\ & a=3 \cdot 2 m s^{-2} \\ & T=0 \cdot 03 g \sin 30^{\circ}-0 \cdot 03(3 \cdot 2) \\ & T=0 \cdot 051 \mathrm{~N} \end{aligned}$	4	M1: Consider A and B separately with equations for equilibrium and motion E2: Correct equations E3: Acceleration E4: Tension
A	9	a ii	Motion down slope for 0.25 m $\begin{aligned} & \mathrm{v}^{2}=u^{2}+2 a s \\ & \mathrm{v}^{2}=2(3 \cdot 2)(0 \cdot 25) \\ & v=1 \cdot 265 \mathrm{~ms}^{-1} \end{aligned}$ After string breaks:		M1: Use of constant acceleration equations with substitution E2: Value of v

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	9	b	A : $\begin{aligned} & 0 \cdot 03 \mathrm{~g} \sin 30^{\circ}=0 \cdot 03 a \\ & a=4 \cdot 9 m s^{-2} \\ & s=u t+\frac{1}{2} a t^{2} \\ & 1 \cdot 75=1 \cdot 265 t+2 \cdot 45 t^{2} \\ & 2 \cdot 45 t^{2}+1 \cdot 265 t-1 \cdot 75=0 \\ & t=0 \cdot 626 \end{aligned}$ $\begin{aligned} & \text { B : } \\ & 0 \cdot 02 g \sin 30^{\circ}-0 \cdot 5 R_{B}=0 \cdot 02 a \\ & a=0 \cdot 656 \mathrm{~ms}^{-2} \\ & s=u t+\frac{1}{2} a t^{2} \\ & 2=1 \cdot 265 t+0 \cdot 325 t^{2} \\ & 0 \cdot 325 t^{2}+1 \cdot 265 t-2=0 \\ & t=1 \cdot 207 \end{aligned}$	4	M1: Consider A and B with correct distances travelled E2: Time for A E3: Time for B

Question			Expected Answer(s)	Max Mark	Additional Guidance
A	10	a	$\begin{aligned} & T_{P S}=\frac{\lambda x_{P S}}{l}=\frac{m g x_{P S}}{l} \\ & T_{Q S}=\frac{\lambda x_{Q S}}{l}=\frac{3 m g x_{Q S}}{l} \end{aligned}$ In equilibrium: $T_{P S}=T_{Q S}$ $\begin{aligned} & \frac{m g x_{P S}}{l}=\frac{3 m g x_{Q S}}{l} \Rightarrow x_{P S}=3 x_{Q S} \\ & x_{P S}+x_{Q S}=l \\ & x_{P S}+\frac{1}{3} x_{P S}=l \Rightarrow x_{P S}=\frac{3 l}{4} \\ & P S=l+\frac{3 l}{4}=\frac{7 l}{4} \end{aligned}$	4	M1: Use of Hooke's law to state tensions in both springs M2: Equilibrium and equating tensions E3: Establish relationship between extensions E4: State the distance $P S$
A	10	b i	After further extension: $\begin{aligned} & T_{P S}=\frac{\lambda x_{P S}}{l}=\frac{m g\left(\frac{3 l}{4}-x\right)}{l} \\ & T_{Q S}=\frac{\lambda x_{Q S}}{l}=\frac{3 m g\left(\frac{l}{4}+x\right)}{l} \end{aligned}$ Using $\leftarrow F=m a$ $\begin{aligned} & T_{P S}-T_{Q S}=m a \\ & \frac{m g\left(\frac{3 l}{4}-x\right)}{l}-\frac{3 m g\left(\frac{l}{4}+x\right)}{l}=m x \\ & \ddot{x}=\frac{-4 g}{l} x \Rightarrow \text { SHM } \omega^{2}=\frac{4 g}{l} \end{aligned}$	4	M1: State new tensions in each spring M2: use of $F=m a$ E3: Correct equation E4: Complete prove SHM and state value of ω
A	10	b ii	$\begin{gathered} v_{\max }=\omega a=\sqrt{\frac{4 g}{l}} \times l=2 \sqrt{g l} \\ \Rightarrow k=2 \end{gathered}$	2	M1: Equation for max velocity with substitution E2: state value of k

Section B (Mathematics for Applied Mathematics)

Question			Expected Answer(s)	Max Mark	Additional Guidance
B	1		$\begin{aligned} y & =e^{5 x} \tan 2 x \\ \frac{d y}{d x} & =e^{5 x} \cdot \frac{d}{d x}(\tan 2 x)+\tan 2 x \cdot \frac{d}{d x}\left(e^{5 x}\right) \\ & =e^{5 x} \cdot 2 \sec ^{2} 2 x+\tan 2 x \cdot 5 e^{5 x} \\ & =e^{5 x}\left(2 \sec ^{2} 2 x+5 \tan 2 x\right) \end{aligned}$	3	1: form of product rule 1: one derivative correct 1: other derivative correct (Factorisation not needed)
B	2	a	$\begin{aligned} & A^{2}=\left(\begin{array}{ll} 3 & -5 \\ 1 & -1 \end{array}\right)\left(\begin{array}{ll} 3 & -5 \\ 1 & -1 \end{array}\right)=\left(\begin{array}{cc} 4 & -10 \\ 2 & -4 \end{array}\right) \\ & \operatorname{det} A^{2}=(4 \times-4)-(2 \times-10)=4 \end{aligned}$ Since $\operatorname{det} A^{2} \neq 0$, inverse of A^{2} exists	2	1: Matrix A^{2} correct 1: correct reason stated
B	2	b	$A^{2} B=\left(\begin{array}{cc} 4 & 6 \\ 2 & -2 \end{array}\right)$ Inverse of $A^{2}=\frac{1}{4}\left(\begin{array}{ll}-4 & 10 \\ -2 & 4\end{array}\right)$ Pre-multiply by $\left(A^{2}\right)^{-1}$ $\begin{aligned} I B & =\frac{1}{4}\left(\begin{array}{ll} -4 & 10 \\ -2 & 4 \end{array}\right)\left(\begin{array}{cc} 4 & 6 \\ 2 & -2 \end{array}\right) \\ B & =\left(\begin{array}{cc} 1 & -11 \\ 0 & -5 \end{array}\right) \end{aligned}$ ALTERNATIVE SOLUTION Let $\quad B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ $\begin{array}{rl} A^{2} B= & \left(\begin{array}{cc} 4 & -10 \\ 2 & -4 \end{array}\right)\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)=\left(\begin{array}{cc} 4 & 6 \\ 2 & -2 \end{array}\right) \\ 4 a-10 c=4 & 4 b-10 d=6 \\ 2 a-4 c=2 & 2 b-4 d=-2 \end{array}$ Hence, $\begin{array}{ll} a=1 & b=-11 \\ c=0 & d=-5 \end{array}$	3	1: Statement of inverse A^{2} 1: multiplying both sides by $\left(A^{2}\right)^{-1}$ 1: matrix B 1: Simultaneous equations 1: Two solutions 1: Remaining two solutions.

	tio	Expected Answer(s)	Max Mark	Additional Guidance
B	3	$\begin{aligned} y & =\frac{\sin x}{2-\cos x} \\ \frac{d y}{d x} & =\frac{(2-\cos x) \cdot \cos x-\sin x(\sin x)}{(2-\cos x)^{2}} \\ & =\frac{2 \cos x-\left(\cos ^{2} x+\sin ^{2} x\right)}{(2-\cos x)^{2}} \\ & =\frac{2 \cos x-1}{(2-\cos x)^{2}} \end{aligned}$ For a S.P., $\frac{d y}{d x}=0 \Leftrightarrow \frac{2 \cos x-1}{(2-\cos x)^{2}}=0$ $\begin{gathered} \Leftrightarrow 2 \cos x-1=0 \\ \Leftrightarrow \cos x=\frac{1}{2} \\ x=\frac{\pi}{3} \end{gathered}$ $\text { when } x=\frac{\pi}{3}, y=\frac{\sin \frac{\pi}{3}}{\left(2-\cos \frac{\pi}{3}\right)}=\frac{\sqrt{3}}{3}$	5	1: form of quotient rule with substitution or product rule 1: derivative 1: Use of $\sin ^{2} x+\cos ^{2} x=1$ to simplify expression 1: x coordinate 1: y coordinate
B	4	$\begin{aligned} & \log _{a} 2+\log _{a} 4+\log _{a} 8=6 \log _{a} 2 \\ & \sum_{r=1}^{100} \log _{a} 2^{r} \\ & =\log _{a} 2+\log _{a} 2^{2}+\log _{a} 2^{3}+\ldots+\log _{a} 2^{100} \\ & \\ & =\log _{a} 2(1+2+3+\ldots .+100) \\ & \\ & =\log _{a} 2\left(\frac{100(101)}{2}\right) \\ & \\ & =5050 \log _{a} 2 \end{aligned}$	4	1: Statement of answer 1: Expansion 1: simplification of indices and factorising 1: correct answer

Question			Expected Answer(s)	$\begin{aligned} & \hline \text { Max } \\ & \text { Mark } \end{aligned}$	Additional Guidance
B	6	a	$\begin{aligned} & \frac{1}{1-y^{2}}=\frac{1}{(1+y)(1-y)}=\frac{A}{1+y}+\frac{B}{1-y} \\ & 1=A(1-y)+B(1+y) \\ & A=\frac{1}{2} \\ & B=\frac{1}{2} \\ & \frac{1}{1-y^{2}}=\frac{1}{2}\left(\frac{1}{1+y}+\frac{1}{1-y}\right) \end{aligned}$	3	1: form of partial fractions 1: constant value A 1: constant value B
B	6	b	Substitution integral: $\begin{aligned} & u=\sqrt{1-x} \\ & \frac{d u}{d x}=\frac{1}{2}(1-x)^{-1 / 2} \times-1 \\ & =\frac{-1}{2 \sqrt{1-x}} \\ & -2 d u=\frac{d x}{\sqrt{1-x}} \end{aligned}$ Using $\begin{gathered} u=\sqrt{1-x} \\ x=1-u^{2} \end{gathered}$ $\begin{aligned} & \int \frac{d x}{x \sqrt{1-x}} \\ & =\int \frac{-2 d u}{x} \\ & =-2 \int \frac{d u}{1-u^{2}} \\ & =-2 \int \frac{1}{2}\left(\frac{1}{1+u}+\frac{1}{1-u}\right) d u \\ & =-(\ln \|1+u\|-\ln \|1-u\|)+C \\ & =\ln \|1-\sqrt{1-x}\|-\ln \|1+\sqrt{1-x}\|+C \\ & =\ln \left\|\frac{1-\sqrt{1-x}}{1+\sqrt{1-x}}\right\|+C \end{aligned}$	6	1: correct derivative 1: express x in terms of u 1: replace all terms 1: use of partial fractions 1: integration 1: replace all u terms (do not penalise omission of +C or moduli signs)

