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A 0 R
€)) The maximum speed = 10 = wa

= w = 1—0 = 100
01
] L 27
= Period of oscillation = T = — = — s
100
(b) Now V* = o?(a® = ¥)

100?(0-1% - 0-05%)

100° x 0:0075 = 75
When the particle is 5 cm from O, it has speed 8:66 m s2.

Let the initial speed of the ball be V ms™.
The horizontal motion is given by

x = (V cosO)t = 40 = % =
The vertical motion is given by
. 1
y = (Vsing)t - Egt2
vt 1,
2 = - _ =
- 5 2%
Eliminating t gives
2 = 30 - 25009
2V?
V2 - 25009
56
V = 2lms?

Firstly, v, = 2ti + 4j
and alsovg = 2ti — 2 cos2ztj + C
Giventhatwhent = 0,vqg = Othenc = 2j, so

Vo = 2ti + 2(1 - cos2mt)]
When the boats have the same velocity
2(1 — cos2at) = 4 = cos2nt = -1

= t =05 155
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A4. (@)  Starting with %’ = aand integrating gives

v=at+cC 1M
Whent = 0,v = uhencec = u 1
andsov = u + at (*).
ds . .

Thus we have priie u + at. Integrating gives

s = ut + Jat®> + k 1
Othenk = 0sos = ut + 3at? (**) 1
vV-u

a

Sinces = Owhen't

(b) From equation (*) t

— 2
i : . u(v u vV — U
and substitute into (**) togives = ( ) + ( )

2a
= 2a8=2u0v — 20> + VV —2uv + ¥ = VvV — U° 2E1
= V¢ = U’ + 2as

A5. Method 1 - velocities

1
. sin ZPAB sin 100°
By the sine rule = ) 1
y 70 350
Hence ZPAB = 11:4°.
So the required bearing is 111-4° 1
Method 2 - displacements
A
1
350t km B
70t km
p
Let the time be t hours. Then
sin ZPAB_ sin 100 . sin ZPAB - sin 100 s UPAB — 11.4° 1

70t 350t
So the required bearing is 111-4° 1
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AT.

C Let the origin of a rectangular coordinate system be
the point Band let i be the unit vector in the
direction BA 1
B Tr A
Thenva_g = —Uiand
Ve, c = U c0os60° + U sin60% = U (i + V3j) 1
The impulse is given by
| = m(Ve_,c = Vasss) 1
= | = ImU (3i + V3j) 1
and the magnitude of the impulse is|1 | = v/3mU 1

Let mkg be the mass of the block,
and a m st its acceleration down

the slope.
Then,ma = mgsind = a = gsiné. 1M
Let sbe the distance travelled down the slope.
Now,sin9=D:s=_L, 1
S sin
andalsos = ut + 3at> = 3(gsin)t2
Hence _h - 9°0 etz. 1
sin 0 2
= t? = 2_h2 . 1
gsin-o

[ 2h
= 1= - .
gsin?o



A8.

uR

Let Rbe the normal reaction force and u the coefficient of friction between the
cycle wheels and the track.

Resolving forces in the vertical direction
Rcos45° = uRsin45° + mg

= R -w =V2mg (%
Resolving in the horizontal direction

mv? :
- = R'sin45° + uR cos45°

R+ = 3V2mg  (x %)
Dividing equations (*) and (**)
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A9.

(@)

(b)

Ae— 2L —»B

\ 60° 30°

L

\

Let T; be the tension in AV and T, the tension in BC.
Resolving horizontally gives

T; cos60° = T, cos30°
= T, = V3T, ()

DC

Resolving vertically gives
T, sin60° + T,sin30° = W

= V3T, + T, = 2W (% %)
Using (*) and (**) to eliminate T,
we get4T, = 2W = T, = 0:5W.
So the tension in BC is 0-5W newtons.

Since CB = +/3L, the extension of the string is (v3 — 1)L.

. A
Using Hooke’s law T, = rx

gives 0-5W = A(v3 — 1)

w
and the modulus of elasticity is ———.
P Y VY
) . . NG
The elastic potential energy is E = TR

SO

1w 2
E=Z—2(\/§_l)(\/§—1)|-

= %(\/é — 1)LW joules
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A10.

(a)

(b)

Method 1 - work-energy

Height of Aabove BCis5sin30° = 2.5 m.

Change in potential energy = mgAh = 02 x 98 x 25 = 49
Work done overcoming friction= Fs = 008 x 5 = 04 ]

At C, kinetic energy of sledge = (4.9 — 0-4) = 45

Method 2 - Newton's laws

Let a be the acceleration. Resolving parallel to AB

mg cos 60° — 0-08
= a=49-04 = 45
V=02 +2x45x5 =45

ma

:%mﬁ:%xo-zx4s=4-5
At C, kinetic energy of sledge = 4-5J

Let D be the point at which the sledge leaves the track so that, as the
sledge approaches D, the normal force, R, tends to 0.

Let the speed of the sledge at D be v so that, at D,

mgsin0=¥ = V' = rgsin® = 2gsino

Hence at D, the kinetic energy of the sledge ismg sin® = 1:96 sin 6.

Height of D above BC= 2 sin@ + 2 cos30° = 2sinfd + 1.732
Potential energy at Dismg(2 sin@ + v/3) = 1.96(2 sin6 + 1.732)
By the conservation of energy,

196 (2 sin® + 1.732) + 1.96 sin® = 4.5
3sin® + 1.732 = 2.296

0-564

sing = = 0-188

Hence, the angle between OD and the horizontal is 10-8°.
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All. (a)

(b)

Whilst being towed, the equation of motion of the skier
60d—v = 300 — 15v
dt
= [dt = 4] L v
20 - v

=t=-4In|20 -v|+ C
Whent = 0,v = 0,s0C = 41In20
20 ‘
20 — v
0-25t

Rearranging gives 20 _ e
INIIVE 20— v ~

and hencet = 41In

= 20 —v = 20e?® = v = 20(1 -

Whent = 6,v = 20(1 - €% = 155 ms™.
The line BC passes through (6,15:5) and (10, 0).
So an equation forBCisv — 0 = -3:9(t — 10)

= v =39 - 3.9t

is

e—0-25t)

Distance travelled betweent = Oandt = 10 is given by

S

6 ~0-25t 10 _
j020(1 — e dt + jﬁ (39 - 3

_ 20[t + 4e°%]] & [30t - 1.95t2]

.9t) dt

10
6

=20(6 + 4> - 4) + (390 - 195 - 234 + 70.2)

=~ 89.05m

[END OF MECHANICS SOLUTIONS
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Section B Solutions

B1. e , . g 6 powers 1
b - —) = b+ 5b4(——) + 10b°= + 10b° (——) +5b— - ==
( b b ™ 7 b e coeffs 1
signs 1
80 80 32
= b’ - 100° + 40b - — + — - = 1
- b B b
B2. U = cosx = du = — sinxdx, 1
x=0=u=1 X=%2=u=3% 1
Hence
/3 % 1 %
cos®x sin xdx = —f udu = [——uﬂ 1
1 6 1
11 1 21
= ——+ = = — (=~ 0.164 1
55 75 = 128 )
OR
/3 1 7l3
cos’ X sinxdx = [_5 cos‘sx]0 3E1
11 1 21
55 75 = 128 )
B3. x= P41 Xy
dt
dy 2
=1-3 =2 = _ot 1
y =t
dy _ & M1
dx &
_ o _
o2t 2
= -9whent = 2 1
Point of contactis x = 5,y = -23. 1
Equation of tangent is
(y+23) = -9(x - 5) 1

y+ 23 = -9x + 45
y+ 9x = 22
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B4. 1 1 0
det| 0 k — 2 -1 :1det(k;2_k1)—1det((l)_kl
1 2 K

=k-2k+2-(0+1)

=k -2k+1=(k-17°=
Hence the matrix does not have an inverse when k = 1.

BS. AP
dt
dx 2
— - —x =3t
dt t
Integrating factor:f—%dt = —2Int = Int? soIF= t2,
lox 2 _ 3
t2dt 87t
X 3
— = | =dt
t? t
=3Int+c
x = t?(3Int + ¢
11) >c=1+0
= t*(1 + 31Int)
B6. f (X) = xtan2x

f/(X) = tan2x + 2x sec’ 2x

M1,1

M1,1

M1,1

f7(X) = 2 sec?2x + 2 sec?2x + 2x(4 sec 2x(sec2xtan2x)) 2E1

= 4 sec®2x + 8x sec’2x tan 2x

= 4 sec®2x(1 + 2x tan2x).

/6 1 2X tan 2 1 /6
I S XX Gy 2 [ 4 sec? 2x (1 + 2 tan 2x) dx
0 c0s? 2X 4 Jo

[tan 2X + 2X Sec 2x]o
_ 1[ ]
4

V3
— +
4

e

[END OF SECTION B SOLUTIONS
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