

# Qualifications

## 2022 Mathematics

## Higher

## Paper 2

## **Finalised Marking Instructions**

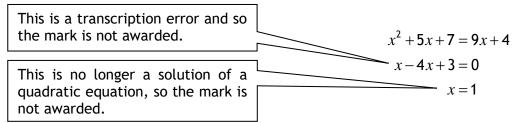
© Scottish Qualifications Authority 2022

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

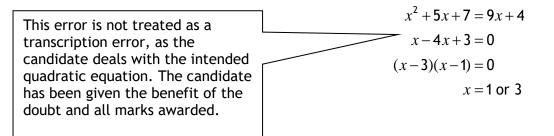
The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.



#### General marking principles for Higher Mathematics


Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:


- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example  $6 \times 6 = 12$ , candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example



The following example is an exception to the above



#### (i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal:  ${}^{5}x = 2$  and x = -4 ${}^{6}y = 5$  y = -7 ${}^{6}y = 5$  and y = -7 ${}^{6}x = -4$  and y = 5 ${}^{6}x = -4$  and y = -7

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

 $\frac{15}{12}$  must be simplified to  $\frac{5}{4}$  or  $1\frac{1}{4}$  $\frac{43}{1}$  must be simplified to 43 $\frac{15}{0\cdot 3}$  must be simplified to 50 $\frac{\frac{4}{5}}{3}$  must be simplified to  $\frac{4}{15}$  $\sqrt{64}$  must be simplified to 8\*

\*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
  - working subsequent to a correct answer
  - correct working in the wrong part of a question
  - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
  - omission of units
  - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$  written as  $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$   $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.

- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

| Strategy 1 attempt 1 is worth 3 marks.                             | Strategy 2 attempt 1 is worth 1 mark.                              |
|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Strategy 1 attempt 2 is worth 4 marks.                             | Strategy 2 attempt 2 is worth 5 marks.                             |
| From the attempts using strategy 1, the resultant mark would be 3. | From the attempts using strategy 2, the resultant mark would be 1. |

In this case, award 3 marks.

### Marking Instructions for each question

| Question |                     | on                       | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Illustrative scheme                                                | Max<br>mark |
|----------|---------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|
| 1.       | (a)                 |                          | • <sup>1</sup> determine gradient of AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ● <sup>1</sup> −1                                                  | 3           |
|          |                     |                          | • <sup>2</sup> determine gradient of altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • <sup>2</sup> 1                                                   |             |
|          |                     |                          | • <sup>3</sup> find equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • <sup>3</sup> $y = x - 4$                                         |             |
| Note     | es:                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                  |             |
|          |                     |                          | ilable to candidates who find and use<br>any arrangement of a candidate's equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a perpendicular gradient.<br>Iation where constant terms have been |             |
| 2. /     | At ●³, a<br>simplif | accept<br>ied.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |             |
| 2. /     | At ●³, a<br>simplif | accept<br>ied.<br>/ Obse | any arrangement of a candidate's equeritary arrangement of a candidate and the second se |                                                                    |             |

| Question                                                                                                                                       | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | Illustrative scheme                                                                                                                                                         | Max<br>mark |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| 1. (b)                                                                                                                                         | • <sup>4</sup> determine midpoint of AC                                                                                                                                                                                                                                                                                                                                                                                               |                                | • <sup>4</sup> (3,1)                                                                                                                                                        | 3           |  |  |  |  |  |
|                                                                                                                                                | • <sup>5</sup> determine gradient of median                                                                                                                                                                                                                                                                                                                                                                                           |                                | • <sup>5</sup> 5                                                                                                                                                            |             |  |  |  |  |  |
|                                                                                                                                                | • <sup>6</sup> find equation                                                                                                                                                                                                                                                                                                                                                                                                          |                                | • $y = 5x - 14$                                                                                                                                                             |             |  |  |  |  |  |
| Notes:                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                                                                                                                             |             |  |  |  |  |  |
| <ul> <li>4. •<sup>6</sup> is only ava</li> <li>5. At •<sup>6</sup>, accept simplified.</li> </ul>                                              | <ol> <li>•<sup>5</sup> is only available to candidates who use a midpoint to find a gradient.</li> <li>•<sup>6</sup> is only available as a consequence of using a 'midpoint' of AC and the point B.</li> <li>5. At •<sup>6</sup>, accept any arrangement of a candidate's equation where constant terms have been simplified.</li> <li>•<sup>6</sup> is not available as a consequence of using a perpendicular gradient.</li> </ol> |                                |                                                                                                                                                                             |             |  |  |  |  |  |
| Commonly Obse                                                                                                                                  | erved Responses:                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                                                                                                             |             |  |  |  |  |  |
| Midpoint <sub>AC</sub> (3,1)<br>$m_{AC} = \frac{1}{2} \Longrightarrow m_{\perp} =$<br>y + 2x = 7<br>For other perper                           | ● <sup>3</sup> <mark>✓ 2</mark><br>ndicular bisectors award 0/3                                                                                                                                                                                                                                                                                                                                                                       | $m_{AC}$<br>$m_{\perp}$<br>y + | didate B - Altitude through B<br>$=\frac{1}{2} \qquad \qquad \bullet^{1} \land \\ =-2 \qquad \qquad \bullet^{2} \varkappa \\ 2x = 0 \qquad \qquad \bullet^{3} \checkmark 2$ |             |  |  |  |  |  |
| Candidate C - Me<br>Midpoint <sub>BC</sub> $\left(\frac{9}{2}, -\right)$                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | didate D - Median through C<br>point <sub>AB</sub> $\left(\frac{1}{2}, -\frac{5}{2}\right)$ • <sup>1</sup> *                                                                |             |  |  |  |  |  |
| $m_{AM} = \frac{1}{11}$                                                                                                                        | • <sup>2</sup> <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                               | m <sub>cn</sub>                | $\bullet^2 \checkmark 1$                                                                                                                                                    |             |  |  |  |  |  |
| 11y = x - 10                                                                                                                                   | • <sup>3</sup> 🖌 2                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 <i>y</i>                    | $= 11x - 38$ • <sup>3</sup> $\checkmark$ 2                                                                                                                                  |             |  |  |  |  |  |
| (c)                                                                                                                                            | • <sup>7</sup> determine <i>x</i> -coordinate                                                                                                                                                                                                                                                                                                                                                                                         |                                | • <sup>7</sup> 2.5                                                                                                                                                          | 2           |  |  |  |  |  |
|                                                                                                                                                | • <sup>8</sup> determine <i>y</i> -coordinate                                                                                                                                                                                                                                                                                                                                                                                         |                                | • <sup>8</sup> -1.5                                                                                                                                                         |             |  |  |  |  |  |
| Notes:                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                                                                                                                             |             |  |  |  |  |  |
| 7. For $\left(\frac{10}{4}, -\frac{6}{4}\right)$ award 1/2 (do not penalise repeated lack of simplification - general marking principle (l) ). |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                                                                                                                             |             |  |  |  |  |  |
| Commonly Obse                                                                                                                                  | erved Responses:                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                                                                                                             |             |  |  |  |  |  |
|                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                                                                                                                             |             |  |  |  |  |  |

| Q                              | uestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Generic scheme                                                                               |                  | Illustrative scheme                                                    | Max<br>mark |  |  |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------|-------------|--|--|--|--|--|
| 2.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <sup>1</sup> use discriminant                                                              |                  | • <sup>1</sup> $(-8)^2 - 4(2)(4-p)$                                    | 3           |  |  |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <sup>2</sup> apply condition and simplify                                                  |                  | • <sup>2</sup> $32 + 8p > 0$ or $8p > -32$                             |             |  |  |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <sup>3</sup> state range                                                                   |                  | • $p > -4$                                                             |             |  |  |  |  |  |
| Note                           | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |                  |                                                                        |             |  |  |  |  |  |
| fc<br>w<br>2. If<br>C<br>3. If | <ol> <li>At •<sup>1</sup>, treat the inconsistent use of brackets eg (-8)<sup>2</sup> - 4×2×4 - p or -8<sup>2</sup> - 4(2)(4 - p) as bad form only if the candidate deals with the unbracketed terms correctly in the next line of working.</li> <li>If candidates have the condition 'discriminant = 0', then •<sup>2</sup> and •<sup>3</sup> are unavailable. However, see Candidate E.</li> <li>If candidates have the condition 'discriminant &lt; 0', 'discriminant ≤ 0' or 'discriminant ≥ 0' then •<sup>2</sup> is lost but •<sup>3</sup> is available.</li> </ol> |                                                                                              |                  |                                                                        |             |  |  |  |  |  |
| Com                            | monly Obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | served Responses:                                                                            |                  |                                                                        |             |  |  |  |  |  |
| Cand                           | lidate A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bad form                                                                                     | Can              | didate B - no coefficient of p                                         |             |  |  |  |  |  |
| (-8)2                          | $^{2}-4\times2\times4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -p > 0                                                                                       | (-8              | $)^2 - 4 \times 2 \times 4 - p > 0$                                    |             |  |  |  |  |  |
|                                | 8 <i>p</i> > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ● <sup>1</sup> ✓ ● <sup>2</sup> ✓                                                            |                  | $p > 0$ $\bullet^1 \times \bullet^2$                                   | √ 2         |  |  |  |  |  |
| <i>p</i> > -                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • <sup>3</sup> ✓                                                                             | <i>p</i> <       |                                                                        | ]           |  |  |  |  |  |
|                                | idate C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              | Can              | didate D - not bad form                                                |             |  |  |  |  |  |
| -8 <sup>2</sup> -              | $-4 \times 2 \times (4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (-p) > 0                                                                                     |                  | $-4 \times 2 \times (4-p) > 0$                                         |             |  |  |  |  |  |
| 32+                            | 8 <i>p</i> > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ● <sup>1</sup> ✓ ● <sup>2</sup> ✓                                                            | -96              | $p + 8p > 0$ $\bullet^1 \times \bullet^2$                              | ✓ 2         |  |  |  |  |  |
| <i>p</i> > -                   | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •3 🗸                                                                                         | <i>p</i> >       | • 12 • <sup>3</sup> 🖌 1                                                |             |  |  |  |  |  |
| Real<br>(-8)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | condition stated initially<br>ct roots $b^2 - 4ac > 0$<br>$(4-p) = 0$ $\bullet^1 \checkmark$ | 8 <sup>2</sup> - | didate F $-4(2)(4-p) > 0$ $+8p > 0$ $-4$                               |             |  |  |  |  |  |
| p = -<br>so p                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ● <sup>2</sup> ✓ ● <sup>3</sup> ✓                                                            |                  | vever, $64-4(2)(4-p) > 0$ as the first king may be awarded $\bullet^1$ | line of     |  |  |  |  |  |

| Q  | Question |  | Generic scheme                                                   |                | Illustrative scheme                                      | Max<br>mark |
|----|----------|--|------------------------------------------------------------------|----------------|----------------------------------------------------------|-------------|
| 3. | (a)      |  | • <sup>1</sup> use compound angle formula                        | • <sup>1</sup> | $k \sin x \cos a + k \cos x \sin a$<br>stated explicitly | 4           |
|    |          |  | • <sup>2</sup> compare coefficients                              | • <sup>2</sup> | $k \cos a = 4$ and $k \sin a = 5$<br>stated explicitly   |             |
|    |          |  | • <sup>3</sup> process for $k$                                   | • <sup>3</sup> | $k = \sqrt{41}$                                          |             |
|    |          |  | • <sup>4</sup> process for <i>a</i> and express in required form | • <sup>4</sup> | $\sqrt{41}\sin(x+0.896)$                                 |             |

Notes:

- 1. Accept  $k(\sin x \cos a + \cos x \sin a)$  at •<sup>1</sup>.
- 2. Treat  $k \sin x \cos a + \cos x \sin a$  as bad form only if the equations at the  $\bullet^2$  stage both contain k.
- 3.  $\sqrt{41}\sin x \cos a + \sqrt{41}\cos x \sin a$  or  $\sqrt{41}(\sin x \cos a + \cos x \sin a)$  are acceptable for  $\bullet^1$  and  $\bullet^3$ .
- 4. •<sup>2</sup> is not available for  $k \cos x = 4$  and  $k \sin x = 5$ , however •<sup>4</sup> may still be gained. See Candidate E.
- 5. •<sup>3</sup> is only available for a single value of k, k > 0.
- 6. •<sup>4</sup> is not available for a value of a given in degrees.
- 7. Accept values of *a* which round to 0.9.
- 8. Candidates may use any form of the wave function for  $\bullet^1$ ,  $\bullet^2$  and  $\bullet^3$ . However,  $\bullet^4$  is only available if the wave is interpreted in the form  $k \sin(x+a)$ .
- 9. Evidence for  $\bullet^4$  may not appear until part (b) and must appear by the  $\bullet^5$  stage.

| Commonly Observed Responses:                |                                                 |                                      |                                                       |                                                    |                    |  |  |  |
|---------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------|--|--|--|
| Candidate A                                 | • <sup>1</sup> •                                | Candidate B<br>$k \sin x \cos a + k$ | $a\cos x\sin a \bullet^1 \checkmark$                  | Candidate C<br>$\sin x \cos a + \cos x \sin a$     | a ● <sup>1</sup> ≭ |  |  |  |
| $\sqrt{41}\cos a = 4$ $\sqrt{41}\sin a = 5$ | • <sup>2</sup> <b>√</b> • <sup>3</sup> <b>√</b> | $\cos a = 4$ $\sin a = 5$            | • <sup>2</sup> ¥                                      | $\cos a = 4$ $\sin a = 5$                          | •² 🖌 2             |  |  |  |
| $\tan a = \frac{5}{4}$ $a = 0.896\dots$     |                                                 | $\tan a = \frac{5}{4}$ $a = 0.896$   | Not consistent with equations at $\bullet^2$ .        | $k = \sqrt{41}$ $\tan a = \frac{5}{4}$ $a = 0.896$ | •3 🗸               |  |  |  |
| $\sqrt{41}\sin(x+0.896)$                    | ) ● <sup>4</sup> ✓                              | $\sqrt{41}\sin(x+0.$                 | 896…) • <sup>3</sup> <b>√</b> • <sup>4</sup> <b>≭</b> | $\sqrt{41}\sin(x+0.896)$                           | • <sup>4</sup> ¥   |  |  |  |

| Question Gener           |                  | Gener                       | ric scheme                                    |                         |                                                                      |            | Max<br>mark                             |                                                    |                                                     |                    |
|--------------------------|------------------|-----------------------------|-----------------------------------------------|-------------------------|----------------------------------------------------------------------|------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------------|--------------------|
| 3.                       | (a)              | (continued)                 |                                               |                         |                                                                      |            |                                         |                                                    |                                                     |                    |
| Comr                     | nonly            | 0bse                        | erved Resp                                    | onses:                  |                                                                      |            |                                         |                                                    |                                                     |                    |
|                          |                  |                             | rrors at $\bullet^2 \cos x \sin a$            |                         | <b>Candidate E</b> - us $k \sin x \cos a + k \cos a$                 |            |                                         | <b>Candidate F</b><br>$k \sin A \cos B + k \cos B$ | s A sin B                                           | • <sup>1</sup> ¥   |
| $k \cos k \sin k$        | a = 5<br>a = 4   |                             |                                               | • <sup>2</sup> ×        | $k \cos x = 4$ $k \sin x = 5$                                        |            | • <sup>2</sup> ×                        | $k \cos A = 4$<br>$k \sin A = 5$                   |                                                     | • <sup>2</sup> ×   |
| tan a                    |                  |                             |                                               | •                       | $\tan x = \frac{5}{4}$ $x = 0.896\dots$                              |            |                                         | $\tan A = \frac{5}{4}$ $A = 0.896$                 |                                                     |                    |
| $\sqrt{41}$ s            | $\sin(x)$        | +0.67                       | 74…)∙³√∙                                      | <sup>4</sup> <b>✓ 1</b> | $\sqrt{41}\sin(x+0.89)$                                              | 6)         | • <sup>3</sup> • • <sup>4</sup> • 1     | $\sqrt{41}\sin(x+0.896)$                           | ) ● <sup>3</sup> ✓                                  | •4 🖌 1             |
|                          | (b)              |                             | ● <sup>5</sup> link to                        | (a)                     |                                                                      |            | • <sup>5</sup> $\sqrt{41}\sin($         | x + 0.896) = 5.5                                   |                                                     | 3                  |
|                          |                  |                             | • <sup>6</sup> solve f                        | or $(x +$               | a)                                                                   |            | • <sup>6</sup><br>• <sup>6</sup> 1.033, | • <sup>7</sup> , 2.108                             |                                                     |                    |
|                          |                  |                             | • <sup>7</sup> solve f                        | or x                    |                                                                      |            | •7 0.137,                               | 1.212                                              |                                                     |                    |
| Notes                    | s:               |                             |                                               |                         |                                                                      |            |                                         |                                                    |                                                     |                    |
| 11. ● <sup>7</sup><br>ra | ' is on<br>ange. | ly ava                      | ilable for t                                  | two sol                 | -                                                                    | stat       | - ·                                     | naximum mark avai<br>ore 'solutions' out           |                                                     |                    |
| Comr                     | nonly            | v Obse                      | erved Resp                                    | onses:                  |                                                                      | I          |                                         |                                                    |                                                     |                    |
| Cand                     | idate            | G - c                       | onverting                                     | to radi                 | ans $\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$ |            | ndidate H - w<br>ncation                | orking in degrees                                  | and                                                 |                    |
| $\sqrt{41}$ s            | $\sin(x -$       | +51.3                       | )                                             |                         | •4 *                                                                 | _          | $\frac{1}{1}\sin(x+51.3)$               | 3)                                                 | • <sup>1</sup> ✓ • <sup>2</sup><br>• <sup>4</sup> ⊁ | ✓ • <sup>3</sup> ✓ |
|                          | `                |                             | (3) = 5.5                                     |                         | •5 🖌 1                                                               |            | $\overline{1}\sin(x+51.3)$              | ,                                                  | ● <sup>5</sup> <mark>√ 1</mark>                     |                    |
| $x+5^{\prime}$           |                  |                             | 1, 120.8<br>69.4                              |                         | • <sup>6</sup> 🖌 1                                                   |            | 51.3 = 59.1, 1                          | /                                                  |                                                     |                    |
|                          |                  |                             | $\frac{1}{2}\frac{1}{2}, \frac{69.5\pi}{180}$ |                         | • • 1<br>• <sup>7</sup> • 1                                          |            | <i>x</i> = <b>7</b> .8                  |                                                    | • <sup>6</sup> <mark>√ 1</mark>                     | •7 ^               |
| Cand                     | idate            | l - wo                      | orking in d                                   | egrees                  | • <sup>1</sup> • • <sup>2</sup> • • <sup>3</sup> •                   | Car        | ididate J - w                           | orking in degrees                                  | ● <sup>1</sup> ✓ ● <sup>2</sup>                     | ✓ • <sup>3</sup> ✓ |
| $\sqrt{41}$ s            | $\sin(x -$       | +51.3                       | )                                             |                         | • <sup>4</sup> ¥                                                     | $\sqrt{4}$ | $\frac{1}{1}\sin(x+51.3)$               | )                                                  | •4 🗴                                                |                    |
| $\sqrt{41}$ s            | $\sin(x)$        | +51.3                       | 8) = 5.5                                      |                         | ● <sup>5</sup> <mark>✓ 1</mark>                                      | $\sqrt{4}$ | $\overline{1}\sin(x+51.3)$              | B) = 5.5                                           | ● <sup>5</sup> 🖌 1                                  |                    |
| x+5 <sup>2</sup>         |                  | = 59. <sup>°</sup><br>= 7.8 |                                               |                         | • <sup>6</sup> • • <sup>7</sup> •                                    | <i>x</i> + | 51.3=59.                                | 1, 120.8                                           | • <sup>6</sup> ^ • <sup>7</sup>                     | ^                  |

| Q    | Question |  | Generic scheme                            | Illustrative scheme                                                              | Max<br>mark |
|------|----------|--|-------------------------------------------|----------------------------------------------------------------------------------|-------------|
| 4.   | (a)      |  | • <sup>1</sup> state appropriate integral | • $\int_{-1}^{2} (x^3 - 5x^2 + 2x + 8) dx$                                       | 4           |
|      |          |  | • <sup>2</sup> integrate                  | • <sup>2</sup> $\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$           |             |
|      |          |  | • <sup>3</sup> substitute limits          | • <sup>3</sup> $\left(\frac{1}{4}(2)^4 - \frac{5}{3}(2)^3 + (2)^2 + 8(2)\right)$ |             |
|      |          |  |                                           | $-\left(\frac{1}{4}(-1)^{4}-\frac{5}{3}(-1)^{3}+(-1)^{2}+8(-1)\right)$           |             |
| Note |          |  | ● <sup>4</sup> evaluate area              | • <sup>4</sup> $\frac{63}{4}$ or 15.75                                           |             |

#### Notes:

- 1. Limits and 'dx' must appear at the  $\bullet^1$  stage for  $\bullet^1$  to be awarded. 2. Where a candidate differentiates one or more terms at  $\bullet^2$ , then  $\bullet^3$  and  $\bullet^4$  are not available.
- 3. Candidates who substitute limits without integrating, do not gain  $\bullet^3$  or  $\bullet^4$ .
- 4. Do not penalise the inclusion of '+c'.
- 5. Do not penalise the continued appearance of the integral sign after  $\bullet^1$ .

6. •<sup>4</sup> is not available where solutions include statements such as  $-\frac{63}{4} = \frac{63}{4}$ . See Candidate C.

| Commonly Observed Responses:                                          |                                   |                                                           |                  |
|-----------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|------------------|
| Candidate A                                                           |                                   | Candidate B - evidence of substitution using a calculator |                  |
| $\int_{-1}^{2} \left( x^3 - 5x^2 + 2x + 8 \right)$                    | •1 🗴                              | $\int \left(x^3 - 5x^2 + 2x + 8\right) dx$                | • <sup>1</sup> × |
| $=\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$              | • <sup>2</sup> ✓                  | $=\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$  | • <sup>2</sup> ✓ |
|                                                                       | •3 ∧                              | $=\frac{32}{3}-\left(-\frac{61}{12}\right)$               | • <sup>3</sup> ✓ |
| $=\frac{63}{4}$                                                       | • <sup>4</sup> <mark>✓ 1</mark>   | $=\frac{63}{4}$                                           | •4 🗸             |
| Candidate C - communication for                                       | • <sup>4</sup>                    |                                                           |                  |
| $\int_{-1}^{-1} (x^3 - 5x^2 + 2x + 8) dx \qquad \bullet^1 \checkmark$ |                                   |                                                           |                  |
| ···                                                                   | • <sup>2</sup> ✓ • <sup>3</sup> ✓ |                                                           |                  |
| $=-rac{63}{4}$ , hence area is $rac{63}{4}$ .                       | ●4 ✓                              |                                                           |                  |
| However $-\frac{63}{4} = \frac{63}{4}$ square units c                 | loes not gain •4                  |                                                           |                  |

| Q          | uestic                                                                                                                               | n                | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Illustrative scheme                                                                        | Max<br>mark |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|--|
| 4.         | (b)                                                                                                                                  |                  | Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method 1                                                                                   | 3           |  |
|            |                                                                                                                                      |                  | • <sup>5</sup> state appropriate integral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • <sup>5</sup> $\int_{2}^{4} (x^3 - 5x^2 + 2x + 8) dx$                                     |             |  |
|            |                                                                                                                                      |                  | • <sup>6</sup> evaluate integral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • <sup>6</sup> $-\frac{16}{3}$                                                             |             |  |
|            |                                                                                                                                      |                  | <ul> <li><sup>7</sup> interpret result and evaluate<br/>total area</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • <sup>7</sup> $\frac{253}{12}$ or 21.083                                                  |             |  |
|            |                                                                                                                                      |                  | Method 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method 2                                                                                   |             |  |
|            |                                                                                                                                      |                  | • <sup>5</sup> state appropriate integral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • <sup>5</sup> $\int_{2}^{4} \left( 0 - \left( x^{3} - 5x^{2} + 2x + 8 \right) \right) dx$ |             |  |
|            |                                                                                                                                      |                  | • <sup>6</sup> substitute limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • 6 $-\left(\frac{1}{4}(4)^4 - \frac{5}{3}(4)^3 + (4)^2 + 8(4)\right) -$                   |             |  |
|            |                                                                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(-\left(\frac{1}{4}(2)^{4}-\frac{5}{3}(2)^{3}+(2)^{2}+8(2)\right)\right)$            |             |  |
|            |                                                                                                                                      |                  | • <sup>7</sup> evaluate total area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <sup>7</sup> $\frac{253}{12}$ or 21.083                                                  |             |  |
| Note       | es:                                                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |             |  |
| 7. F       | or car                                                                                                                               | ndidat           | es who only consider $\int_{1}^{4} \dots dx$ or any oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er invalid integral, award 0/3.                                                            |             |  |
|            |                                                                                                                                      |                  | at $\bullet^5$ do not penalise the omission of 'dz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |             |  |
|            |                                                                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                          |             |  |
|            |                                                                                                                                      |                  | • <sup>5</sup> may be awarded for $\left[\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2}{3}x^4\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |             |  |
|            |                                                                                                                                      |                  | $\frac{5}{3}(4)^{3} + (4)^{2} + 8(4) - \left(\frac{1}{4}(2)^{4} - \frac{5}{3}(2)^{3} + $ | ,<br>,                                                                                     |             |  |
| 10.1       | n Meth                                                                                                                               | nod 2,           | • <sup>5</sup> may be awarded for $\left[\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2}{3}x^4\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\left[\frac{x^2}{2} + 8x\right]_4^2$ or $\bullet^5$ and $\bullet^6$ may be awarded        | for         |  |
|            | $\left(\frac{1}{4}(2)^4 - \frac{5}{3}(2)^3 + (2)^2 + 8(2)\right) - \left(\frac{1}{4}(4)^4 - \frac{5}{3}(4)^3 + (4)^2 + 8(4)\right).$ |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |             |  |
| 11. •      | <sup>7</sup> is no                                                                                                                   | t avai           | lable to candidates where solutions inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | clude statements such as $-\frac{16}{3} = \frac{16}{3}$ squ                                | uare        |  |
| ι<br>12. Ι | inits. S<br>n Meth                                                                                                                   | See Ca<br>nod 1, | andidate D.<br>where a candidate's integral leads to a<br>didate has differentiated in both parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a positive value, $\bullet^7$ is not available.                                            |             |  |

| Question Generic scheme |                                  | Generic scheme               | Illustrative scheme                                                        | Max<br>mark                                                     |  |  |  |  |  |
|-------------------------|----------------------------------|------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| 4.                      | (b) (continued)                  |                              |                                                                            |                                                                 |  |  |  |  |  |
| Com                     | Commonly Observed Responses:     |                              |                                                                            |                                                                 |  |  |  |  |  |
| Can                     | didate                           | D - co                       | ommunication for $\bullet^7$                                               |                                                                 |  |  |  |  |  |
| $\int_{2}^{4} (x)$      | $3 - 5x^2$                       | + <b>2</b> <i>x</i> +        | $\bullet 8 \Big) dx = -\frac{16}{3} \qquad \bullet^5 \checkmark \bullet^6$ | ✓                                                               |  |  |  |  |  |
| $\frac{63}{4}$          | $-\frac{16}{3} =$                | 253<br>12                    |                                                                            | •7 🗸                                                            |  |  |  |  |  |
|                         |                                  | • <sup>7</sup> is n<br>appea |                                                                            | th as " $-\frac{16}{3} = \frac{16}{3}$ square units" or "ignore |  |  |  |  |  |
|                         |                                  |                              | fferentiation in (a) and (b)                                               |                                                                 |  |  |  |  |  |
| (a)                     | $\int_{-1}^{2} (x^3 - x^3) dx^3$ | $5x^2 + 2$                   | (2x+8)dx                                                                   | •1 🗸                                                            |  |  |  |  |  |
| =                       | $= 3x^2 -$                       | - <b>10</b> <i>x</i> +       | - 2                                                                        | • <sup>2</sup> ×                                                |  |  |  |  |  |
| =                       | =(3(2                            | ) <sup>2</sup> –10           | $(2)+2)-(3(-1)^2-10(-1)+2)$                                                | • <sup>3</sup> ×                                                |  |  |  |  |  |
|                         | =21<br>Area =                    | 21                           |                                                                            | •4 🗴                                                            |  |  |  |  |  |
| (b) (                   | $(3(4)^2)$                       | -10(4                        | $(4)+2)-(3(2)^2-10(2)+2)=16$                                               | ● <sup>5</sup> ✔ ● <sup>6</sup> ✔ 1                             |  |  |  |  |  |
| ר                       | otal A                           | rea =                        | 5                                                                          | • <sup>7</sup> ✓ 2 see note 12                                  |  |  |  |  |  |

| Question |                                                                             | on                  | Generic scheme                                 | Illustrative scheme                  | Max<br>mark |  |
|----------|-----------------------------------------------------------------------------|---------------------|------------------------------------------------|--------------------------------------|-------------|--|
| 5.       | (a)                                                                         | (i)                 | • <sup>1</sup> interpret notation              | • $f(3x+5)$ or $(g(x))^2 - 2$        | 2           |  |
|          |                                                                             |                     | • <sup>2</sup> state expression for $f(g(x))$  | • <sup>2</sup> $(3x+5)^2-2$          |             |  |
|          |                                                                             | (ii)                | • <sup>3</sup> state expression for $g(f(x))$  | • $3(x^2-2)+5$                       | 1           |  |
| Note     | s:                                                                          |                     |                                                |                                      |             |  |
| 1. F     | or $f($                                                                     | $\left(g(x)\right)$ | $=(3x+5)^2-2$ without working, awar            | d both $\bullet^1$ and $\bullet^2$ . |             |  |
| Com      | monly                                                                       | / Obse              | erved Responses:                               |                                      |             |  |
| Canc     | lidate                                                                      | Α                   |                                                |                                      |             |  |
| (a)(i)   | (a)(i) $f(g(x)) = 3(x^2 - 2) + 5$ $\bullet^1 \times \bullet^2 \checkmark 1$ |                     |                                                |                                      |             |  |
| (a)(ii   | ) g(j                                                                       | f(x)                | $= (3x+5)^2 - 2 \qquad \bullet^3 \checkmark 1$ |                                      |             |  |

| Q                                      | uestic                                                                                                         | on                                  | Gener                                                             | ic scheme               |                                | Illustrative scheme                                                                                              |                  | Max<br>mark |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 5.                                     | (b)                                                                                                            |                                     | • <sup>4</sup> interpret info                                     | rmation and expa        | nd                             | • $9x^2 + 30x + 25 - 2 < 3x^2 - 6$                                                                               | o + 5            | 4           |
|                                        |                                                                                                                |                                     | <ul> <li><sup>5</sup> express inequ<br/>quadratic forr</li> </ul> |                         |                                | • $5 6x^2 + 30x + 24 < 0$                                                                                        |                  |             |
|                                        |                                                                                                                |                                     | • <sup>6</sup> determine zer<br>equation                          | ros of quadratic        |                                | • <sup>6</sup> -4, -1                                                                                            |                  |             |
|                                        |                                                                                                                |                                     | • <sup>7</sup> state range w                                      | ith justification       |                                | • <sup>7</sup> $-4 < x < -1$ with eg sketch table of signs                                                       | h or             |             |
| Note                                   | Notes:                                                                                                         |                                     |                                                                   |                         |                                |                                                                                                                  |                  |             |
| st<br>3. A<br>4. A<br>ju               | till ava<br>ccept<br>t • <sup>7</sup> ac<br>ustific                                                            | ailable<br>the a<br>ccept<br>ation. | e. See Candidate  <br>ppearance of $-4$ ,<br>" $x > -4$ and $x <$ | D.<br>—1 within inequal | lities                         | the outset lose $\bullet^4$ , $\bullet^5$ and $\bullet^7$ .<br>for $\bullet^6$ .<br>-1" together with the requir |                  |             |
| Cand                                   | lidate                                                                                                         | В                                   |                                                                   |                         | Can                            | didate C                                                                                                         |                  |             |
| <b>9</b> <i>x</i> <sup>2</sup> -       | + <b>30</b> <i>x</i> -                                                                                         | + 25 –                              | $2 < 3x^2 - 6 + 5$                                                | •4 🗸                    | <b>9</b> x <sup>2</sup>        | $+30x+25-2 < 3x^2-6+5$                                                                                           | • <sup>4</sup> 🗸 |             |
| $6x^2 +$                               | - <b>30</b> <i>x</i> -                                                                                         | + 24 <                              | 0                                                                 | • <sup>5</sup> ✓        | <b>6</b> <i>x</i> <sup>2</sup> | +30x+24=0                                                                                                        | • <sup>5</sup> 🗴 |             |
| ••••                                   | + 30 <i>x</i> +                                                                                                |                                     | •                                                                 |                         | <i>x</i> =                     | -1, x = -4                                                                                                       | ● <sup>6</sup> ✓ |             |
| <i>x</i> = -                           | - <b>1</b> , <i>x</i> =                                                                                        | =4                                  |                                                                   | •6 🗸                    | -4 <                           | x < -1 with sketch                                                                                               | •7 🗶             |             |
| -4 <                                   | <i>x</i> < –                                                                                                   | 1 with                              | h sketch                                                          | •7 🗸                    |                                |                                                                                                                  |                  |             |
| <b>9</b> x <sup>2</sup> +              | Candidate D<br>$9x^2 + 30x + 25 - 2 = 3x^2 - 6 + 5$ • <sup>4</sup> ×<br>$6x^2 + 30x + 24 = 0$ • <sup>5</sup> × |                                     |                                                                   |                         |                                |                                                                                                                  |                  |             |
| x = -1, x = -4 For $f(g(x)) < g(f(x))$ |                                                                                                                |                                     |                                                                   |                         |                                |                                                                                                                  |                  |             |
|                                        | `                                                                                                              | <i>,</i>                            | h sketch                                                          | •7 🗴                    |                                |                                                                                                                  |                  |             |

| Q                                | uestion                      | Generic scheme                                                                                                            | Illustrative scheme                                                                          | Max<br>mark |  |
|----------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|--|
| 6.                               |                              | • <sup>1</sup> write in integrable form                                                                                   | • $1 - 3x^{-2}$                                                                              | 5           |  |
|                                  |                              | $\bullet^2$ integrate one term                                                                                            | • <sup>2</sup> x or $\dots -\frac{3x^{-1}}{-1}$                                              |             |  |
|                                  |                              | • <sup>3</sup> complete integration                                                                                       | • <sup>3</sup> $-\frac{3x^{-1}}{-1} + c$ or $x \dots + c$                                    |             |  |
|                                  |                              | • <sup>4</sup> interpret information given and substitute for <i>x</i> and <i>y</i>                                       | d $\bullet^4 6 = 3 + 3(3)^{-1} + c$                                                          |             |  |
|                                  |                              | • <sup>5</sup> state expression for $y$                                                                                   | • <sup>5</sup> $y = x + 3x^{-1} + 2$                                                         |             |  |
| Note                             | s:                           |                                                                                                                           |                                                                                              |             |  |
| 3. F                             | or candidat<br>monly Obse    | es who omit $+ c$ only $\bullet^1$ and $\bullet^2$ are<br>es who differentiate either term, $\bullet$<br>erved Responses: | $\bullet^3$ , $\bullet^4$ , and $\bullet^5$ are not available.                               |             |  |
|                                  |                              | complete substitution                                                                                                     | Candidate B - partial integration                                                            |             |  |
| •                                | $x + 3x^{-1} + c$            | $\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$                                                          | $y = 1 + 3x^{-1} + c \qquad \qquad \bullet^1 \checkmark \bullet^2 \checkmark \bullet^3$      | ×           |  |
|                                  | $3+3(3)^{-1}+a$              | • <sup>4</sup> •                                                                                                          | $6 = 1 + 3(3)^{-1} + c \qquad \bullet^4 \checkmark 1$                                        |             |  |
| c = -<br>y = y                   | -4<br>$x + 3x^{-1} - 4$      | ● <sup>5</sup> ✓ 1                                                                                                        | c = 4<br>$y = x + 3x^{-1} + 4$ • <sup>5</sup> $\checkmark$ 1                                 |             |  |
| Cand                             | lidate C - ir                | consistent working                                                                                                        | Candidate D - inconsistent working                                                           |             |  |
| $\frac{dy}{dx} =$                | $=1-\frac{3}{x^2}$           |                                                                                                                           | $\frac{dy}{dx} = 1 - \frac{3}{x^2}$                                                          |             |  |
|                                  | $x - 3x^{-2}$                | • <sup>1</sup> <b>x</b>                                                                                                   | $x - 3x^{-2}$ • <sup>1</sup> *                                                               |             |  |
| y = x                            | $x - \frac{3x^{-1}}{-1} + c$ | $\bullet^2 \checkmark 1 \bullet^3 \checkmark 1$                                                                           | $y = \frac{x^2}{2} - \frac{3x^{-1}}{-1} + c$ $\bullet^2 \checkmark 1 \bullet^3 \checkmark 1$ |             |  |
| Cand                             | idate E                      |                                                                                                                           |                                                                                              |             |  |
|                                  | •                            | complete at • <sup>3</sup> stage                                                                                          |                                                                                              |             |  |
| $\left  \frac{dy}{dx} \right  =$ | $1 - 3x^{-2}$                | •1 🗸                                                                                                                      |                                                                                              |             |  |
| y = x                            | $x - \frac{3x^{-1}}{-1}$     | • <sup>2</sup> 🖌 • <sup>3</sup> 🗴                                                                                         |                                                                                              |             |  |
| y = y                            | $x + 3x^{-1} + c$            |                                                                                                                           |                                                                                              |             |  |

| Q  | uestion | Generic scheme                              | Illustrative scheme                                                                                    | Max<br>mark |
|----|---------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|
| 7. |         | Method 1                                    | Method 1                                                                                               | 5           |
|    |         | • <sup>1</sup> state equation of line       | • $\log_5 y = -2\log_5 x + 3$                                                                          |             |
|    |         | • <sup>2</sup> introduce logs               | • <sup>2</sup> $\log_5 y = -2\log_5 x + 3\log_5 5$                                                     |             |
|    |         | $\bullet^3$ use laws of logs                | • <sup>3</sup> $\log_5 y = \log_5 x^{-2} + \log_5 5^3$                                                 |             |
|    |         | • <sup>4</sup> use laws of logs             | • $\log_5 y = \log_5 5^3 x^{-2}$                                                                       |             |
|    |         | • <sup>5</sup> state k and n                | • <sup>5</sup> $k = 125, n = -2$                                                                       |             |
|    |         | Method 2                                    | Method 2                                                                                               |             |
|    |         | $\bullet^1$ state equation of line          | • $\log_5 y = -2\log_5 x + 3$                                                                          |             |
|    |         | • <sup>2</sup> use laws of logs             | • <sup>2</sup> $\log_5 y = \log_5 x^{-2} + 3$                                                          |             |
|    |         | • <sup>3</sup> use laws of logs             | • <sup>3</sup> $\log_5 \frac{y}{x^{-2}} = 3$                                                           |             |
|    |         | • <sup>4</sup> use laws of logs             | $\bullet^4  \frac{y}{x^{-2}} = 5^3$                                                                    |             |
|    |         | • <sup>5</sup> state $k$ and $n$            | • <sup>5</sup> $k = 125, n = -2$                                                                       |             |
|    |         | Method 3                                    | Method 3<br>The equations at $\bullet^1$ , $\bullet^2$ , and $\bullet^3$<br>must be stated explicitly. |             |
|    |         | • <sup>1</sup> introduce logs to $y = kx^n$ | • <sup>1</sup> $\log_5 y = \log_5 kx^n$                                                                |             |
|    |         | • <sup>2</sup> use laws of logs             | • <sup>2</sup> $\log_5 y = n \log_5 x + \log_5 k$                                                      |             |
|    |         | • <sup>3</sup> interpret intercept          | • <sup>3</sup> $\log_5 k = 3$                                                                          |             |
|    |         | • <sup>4</sup> use laws of logs             | • $k = 125$                                                                                            |             |
|    |         | • <sup>5</sup> interpret gradient           | • <sup>5</sup> $n = -2$                                                                                |             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Question    | Generic scheme                                                         | Illustrative scheme                                                                              | Max<br>mark |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|--|--|
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (continue   | d)                                                                     |                                                                                                  | -           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Method 4                                                               | Method 4                                                                                         |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | • <sup>1</sup> interpret point on log graph                            | • $\log_5 x = 0$ and $\log_5 y = 3$                                                              |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | • <sup>2</sup> convert from log to exponential form                    | • <sup>2</sup> $x = 1, y = 5^3$                                                                  |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | • <sup>3</sup> interpret point and convert                             | • <sup>3</sup> $\log_5 x = 2$ and $\log_5 y = -1$<br>$x = 5^2$ and $y = 5^{-1}$                  |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | • <sup>4</sup> substitute into $y = kx^n$ and<br>evaluate $k$          | • <sup>4</sup> 5 <sup>3</sup> = $k(1)^n \Longrightarrow k = 125$                                 |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | • <sup>5</sup> substitute other point into $y = kx^n$ and evaluate $n$ | • <sup>5</sup> $5^{-1} = 5^3 \times 5^{2n}$<br>$\Rightarrow 3 + 2n = -1$<br>$\Rightarrow n = -2$ |             |  |  |
| Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tes:        |                                                                        | 1                                                                                                |             |  |  |
| <ol> <li>In any method, marks may only be awarded within a valid strategy using y = kx<sup>n</sup>.</li> <li>Markers must identify the method which best matches the candidates approach; markers must not mix and match between methods.</li> <li>Penalise the omission of base 5 at most once in any method.</li> <li>In Method 4, candidates may use (2,-1) for •<sup>1</sup> and •<sup>2</sup> and (0,3) for •<sup>3</sup>.</li> <li>Do not accept k = 5<sup>3</sup>.</li> <li>In Method 3, do not accept m = -2 or gradient = -2 for •<sup>5</sup>.</li> <li>Accept y = 125x<sup>-2</sup> for •<sup>5</sup>.</li> </ol> |             |                                                                        |                                                                                                  |             |  |  |
| Со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nmonly Obse | erved Responses:                                                       |                                                                                                  |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                        |                                                                                                  |             |  |  |

| (   | Question                                     |       | Generic scheme                           | Illustrative scheme                                                                                                                                     | Max<br>mark |  |  |  |  |  |
|-----|----------------------------------------------|-------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| 8.  | (a) •1 determine expression for area of pond |       | -                                        | • <sup>1</sup> $(x-3)(y-2)$ stated or implied<br>by • <sup>3</sup>                                                                                      | 3           |  |  |  |  |  |
|     |                                              |       | • <sup>2</sup> obtain expression for $y$ | • <sup>2</sup> $y = \frac{150}{x}$                                                                                                                      |             |  |  |  |  |  |
|     |                                              |       | • <sup>3</sup> demonstrate result        | • <sup>3</sup> $A(x) = (x-3)\left(\frac{150}{x} - 2\right)$<br>eg $A(x) = \frac{150x}{x} - \frac{450}{x} - 2x + 6$<br>$A(x) = 156 - 2x - \frac{450}{x}$ |             |  |  |  |  |  |
|     |                                              |       |                                          | eg $A(x) = \frac{150x}{x} - \frac{450}{x} - 2x + 6$                                                                                                     |             |  |  |  |  |  |
|     |                                              |       |                                          | $A(x) = 156 - 2x - \frac{450}{x}$                                                                                                                       |             |  |  |  |  |  |
| Not | es:                                          |       |                                          |                                                                                                                                                         |             |  |  |  |  |  |
| 1.  | Accept                                       | any l | egitimate variations for the area of t   | he pond in $\bullet^1$ , eg $A = 150 - 2(x - 3) - 2(y$                                                                                                  | ·)(1.5).    |  |  |  |  |  |
|     |                                              |       |                                          |                                                                                                                                                         |             |  |  |  |  |  |
| Con | Commonly Observed Responses:                 |       |                                          |                                                                                                                                                         |             |  |  |  |  |  |
| _   | didate                                       |       | Candidate A                              |                                                                                                                                                         |             |  |  |  |  |  |

Candidate A  $A(x) = x - 3 \times y - 2 \qquad \bullet^{1} \checkmark$   $A(x) = x - 3 \times \frac{150}{x} - 2 \qquad \bullet^{2} \checkmark$   $A(x) = 156 - 2x - \frac{450}{x} \qquad \bullet^{3} \land$ 

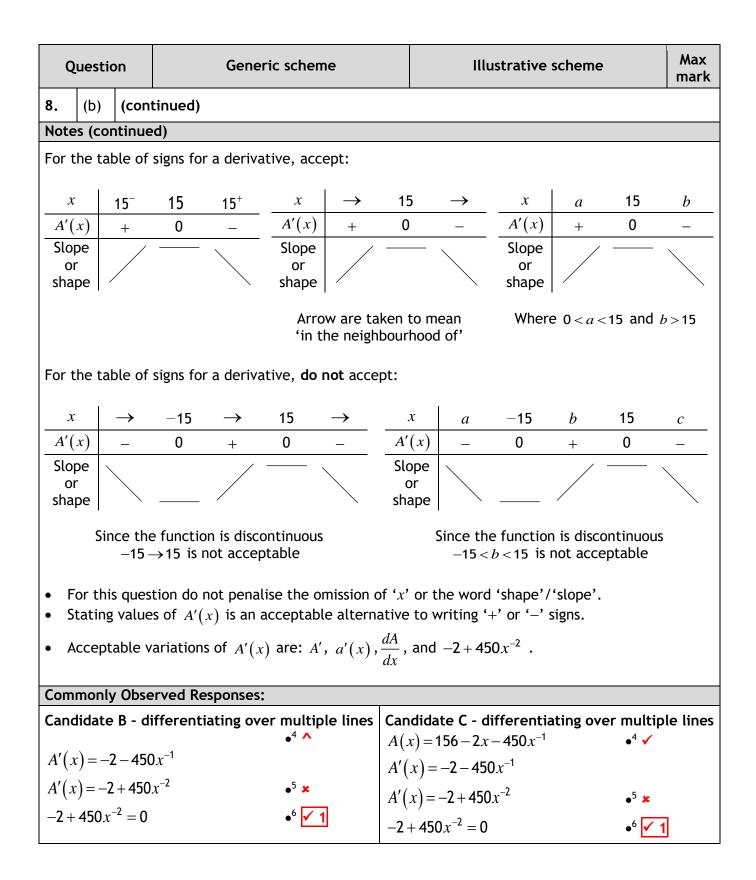
| Q    | uestio | 'n | Generic scheme                                                | Illustrative scheme                                                                                                                           | Max<br>mark |
|------|--------|----|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 8.   | (b)    |    | • <sup>4</sup> express A in differentiable form               | • $^{4}$ 156 - 2x - 450x <sup>-1</sup> stated or implied by • $^{5}$                                                                          | 6           |
|      |        |    | ● <sup>5</sup> differentiate                                  | • <sup>5</sup> $-2+450x^{-2}$                                                                                                                 |             |
|      |        |    | <ul> <li>equate expression for derivative<br/>to 0</li> </ul> | • $^{6}$ -2 + 450 $x^{-2}$ = 0                                                                                                                |             |
|      |        |    | • <sup>7</sup> solve for $x$                                  | • <sup>7</sup> $x = 15$                                                                                                                       |             |
|      |        |    | • <sup>8</sup> verify nature of stationary point              | • <sup>8</sup> table of signs for derivative<br>$\therefore$ maximum<br>or<br>$A''(x) = -900x^{-3}$ and $A''(15) < 0$<br>$\therefore$ maximum |             |
|      |        |    | • <sup>9</sup> determine maximum area                         | • <sup>9</sup> $A = 96(m^2)$                                                                                                                  |             |
| Note | s:     |    |                                                               |                                                                                                                                               |             |

4. For a numerical approach award 0/6.

5. •<sup>6</sup> can be awarded for  $450x^{-2} = 2$ .

6. For candidates who integrate any term at the •<sup>5</sup> stage, only •<sup>6</sup> is available on follow through for setting their 'derivative' to 0.

7. •<sup>7</sup>, •<sup>8</sup>, and •<sup>9</sup> are only available for working with a derivative which contains an index  $\leq -2$ .


8.  $\sqrt{\frac{450}{2}}$  must be simplified at  $\bullet^7$  or  $\bullet^8$  for  $\bullet^7$  to be awarded.

9. Ignore the appearance of -15 at mark  $\bullet^7$ .

10. •<sup>8</sup> is not available to candidates who consider a value of  $x \le 0$  in the neighbourhood of 15.

11. •<sup>9</sup> is still available in cases where a candidate's table of signs does not lead legitimately to a maximum at  $\bullet^8$ .

12. •<sup>8</sup> and •<sup>9</sup> are not available to candidates who state that the maximum exists at a negative value of x.



| Q  | Question |  | Generic scheme                                                      |                                  | Illustrative scheme |                      |   |
|----|----------|--|---------------------------------------------------------------------|----------------------------------|---------------------|----------------------|---|
| 9. | (a)      |  | • <sup>1</sup> substitute for <i>y</i> in equation of circle        |                                  | =0                  | $)^{2}-4x-6(3x+7)-7$ | 5 |
|    |          |  | <ul> <li><sup>2</sup> arrange in standard quadratic form</li> </ul> | • <sup>2</sup> $10x^2 + 20x = 0$ |                     |                      |   |
|    |          |  | • <sup>3</sup> factorise                                            | • <sup>3</sup> $10x(x+2) = 0$    |                     |                      |   |
|    |          |  |                                                                     |                                  | • <sup>4</sup>      | • <sup>5</sup>       |   |
|    |          |  | • <sup>4</sup> state <i>x</i> coordinates                           | •4                               | 0                   | -2                   |   |
|    |          |  | • <sup>5</sup> state corresponding $y$ coordinates                  | • <sup>5</sup>                   | 7                   | 1                    |   |

#### Notes:

1.  $\bullet^1$  is only available if '=0' appears by the  $\bullet^3$  stage.

- 2. At  $\bullet^3$ , the quadratic must lead to two distinct real roots for  $\bullet^4$  and  $\bullet^5$  to be available.
- 3. At  $\bullet^3$  do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10.
- 4. If a candidate arrives at an equation which is not a quadratic at  $\bullet^2$  stage, then  $\bullet^3$ ,  $\bullet^4$  and  $\bullet^5$  are not available
- 5.  $\bullet^3$  is available for substituting correctly into the quadratic formula.
- 6.  $\bullet^4$  and  $\bullet^5$  may be marked either horizontally or vertically.
- 7. Ignore incorrect labelling of P and Q.

#### Commonly Observed Responses:

Candidate A - substituting for y

| $\left(\frac{y-7}{3}\right)^2 + y^2 - 4\left(\frac{y-7}{3}\right) - 6$ | $y - 7 = 0 \bullet^1 \checkmark$ |
|------------------------------------------------------------------------|----------------------------------|
| $\frac{10y^2 - 80y + 70}{9} = 0$                                       | • <sup>2</sup> ✓                 |
| 10(y-1)(y-7) = 0                                                       | • <sup>3</sup> ✓                 |
| y = 1  or  y = 7                                                       | •4 🗸                             |
| x = -2  or  x = 0                                                      | •5 🗸                             |

| Q                  | uestic                  | on                                      | Generie                                     | c scheme                  |                 | Illustrative scheme                                                                                  | Max<br>mark      |
|--------------------|-------------------------|-----------------------------------------|---------------------------------------------|---------------------------|-----------------|------------------------------------------------------------------------------------------------------|------------------|
| 9.                 | (b)                     |                                         | • <sup>6</sup> state centre of              | circle                    |                 | • <sup>6</sup> (2, 3)                                                                                | 4                |
|                    |                         |                                         | • <sup>7</sup> calculate midp               | oint of PQ                |                 | • <sup>7</sup> (-1, 4)                                                                               |                  |
|                    |                         |                                         | • <sup>8</sup> calculate radiu              | s of small circle         |                 | • <sup>8</sup> \sqrt{10}                                                                             |                  |
|                    |                         |                                         | • <sup>9</sup> state equation               | of small circle           |                 | • <sup>9</sup> $(x-2)^2 + (y-3)^2 = 10$                                                              |                  |
| Note               | s:                      |                                         |                                             |                           |                 |                                                                                                      |                  |
| 9. W<br>h<br>10. W | /here<br>oweve<br>/here | a can<br>er • <sup>8</sup> a<br>candi   | nd • <sup>9</sup> may be awar               | nates for P and C<br>ded. |                 | hout supporting working, $\bullet^7$ is not availance $\bullet^8$ and $\bullet^9$ are not available. | able,            |
|                    | -                       |                                         | sing substitution                           |                           | Can             | didate C - using tangency                                                                            |                  |
|                    |                         |                                         | ller circle of form                         |                           |                 | ation of smaller circle of form                                                                      |                  |
| ( <i>x</i> –       | $(2)^{2} + ($           | (y-3                                    | $)^2 = r^2$                                 | •6 🗸                      | ( <i>x</i> -    | $(-2)^{2} + (y-3)^{2} = r^{2}$                                                                       | •6 🗸             |
| Midp               | oint P                  | Q (–1                                   | , 4)                                        | •7 🗸                      | Sinc            | e $y = 3x + 7$ is tangent to smaller circle                                                          | 5                |
| (-1-               | $(-2)^{2} +$            | (4 - 3)                                 | $(s)^2 = r^2$                               |                           | 10 <i>x</i>     | $x^{2} + 20x + 20 - r^{2} = 0$ has equal roots                                                       |                  |
| $r^2 = 1$          | 10                      | × ·                                     | ,                                           | • <sup>8</sup> 🗸          | $\Rightarrow$ 2 | $20^2 - 4(10)(20 - r^2) = 0$                                                                         | •7 🗸             |
| (x-)               | $(2)^{2} + ($           | (y-3)                                   | $)^{2} = 10$                                | ●9 ✓                      | $\Rightarrow$   | $r^{2} = 10$                                                                                         | • <sup>8</sup> 🗸 |
|                    | )                       | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,                                           |                           | ( <i>x</i> -    | $(-2)^{2} + (y-3)^{2} = 10$                                                                          | •9 🗸             |
| Cand<br>radiu<br>: |                         | D - u                                   | sing P or Q to mid                          | -point as                 |                 |                                                                                                      |                  |
|                    | (-2+                    | $(-1)^{2} +$                            | $\overline{\left(1-4\right)^2} = \sqrt{10}$ | • <sup>8</sup> ¥          |                 |                                                                                                      |                  |
| or $r = \sqrt{r}$  | (0+1                    | $)^{2} + (7)^{2}$                       | $(7-4)^2 = \sqrt{10}$                       | • <sup>8</sup> ¥          |                 |                                                                                                      |                  |
|                    |                         | · ·                                     | $)^{2} = 10$                                | • <sup>9</sup> 🖌 2        |                 |                                                                                                      |                  |

| C                            | Juestic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on     | Generic scheme                                        | Illustrative scheme                                                                                                        | Max<br>mark      |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| 10.                          | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | • <sup>1</sup> evaluate P for $t = 24.55$             | • <sup>1</sup> 929                                                                                                         | 1                |  |  |  |  |
| Note                         | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                       |                                                                                                                            |                  |  |  |  |  |
| 1. 4                         | 1. Accept any answer which rounds 929.0368007 to at least 2 significant figures.                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                       |                                                                                                                            |                  |  |  |  |  |
| Com                          | monly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v Obse | erved Responses:                                      |                                                                                                                            |                  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                       |                                                                                                                            |                  |  |  |  |  |
|                              | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\bullet^2$ substitute for <i>P</i> and <i>D</i>      | • <sup>2</sup> 850 = 0.188807 $(600 - 210)^k$                                                                              | 4                |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | • <sup>3</sup> arrange equation in the form $a = b^k$ | • <sup>3</sup> $\frac{850}{0.188807} = (600 - 210)^k$                                                                      |                  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | • <sup>4</sup> write in logarithmic form              | • <sup>4</sup> eg $\ln\left(\frac{850}{0.188807}\right) = \ln(600-210)^k$<br>or $k = \log_{(600-210)}\frac{850}{0.188807}$ |                  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | • <sup>5</sup> solve for $k$                          | • <sup>5</sup> 1.41                                                                                                        |                  |  |  |  |  |
| Note                         | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                       |                                                                                                                            |                  |  |  |  |  |
| 3. 4<br>4. 4<br>5. 7<br>6. f | <ol> <li>•<sup>3</sup> may be implied by •<sup>4</sup>.</li> <li>Any base may be used at •<sup>4</sup> stage.</li> <li>Accept 1.4 at •<sup>5</sup>.</li> <li>The calculation at •<sup>5</sup> must follow from the valid use of exponentials and logarithms at •<sup>3</sup> and •<sup>4</sup>. See Candidate A.</li> <li>For candidates who take an iterative approach to arrive at the value t = 1.41 award 1/4. However, if, in the iterations P is calculated for t = 1.405 and t = 1.415 then award 4/4.</li> </ol> |        |                                                       |                                                                                                                            |                  |  |  |  |  |
| Com                          | monly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Obse   | erved Responses:                                      |                                                                                                                            |                  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ivalid use of exponentials                            | Candidate B - transcription error                                                                                          |                  |  |  |  |  |
| 850                          | = 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88807  | $(600-210)^k  \bullet^2 \checkmark$                   | $850 = 0.18807 (600 - 210)^k$                                                                                              | • <sup>2</sup> 🗴 |  |  |  |  |
|                              | = <b>73.6</b><br><sub>3.63473</sub> 8<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                       | $4519.59 = 390^k$ $\bullet^3 \checkmark$ $\log_{390} 4519.59$ $\bullet^4 \checkmark$ $1.41$ $\bullet^5 \checkmark$         |                  |  |  |  |  |

[END OF MARKING INSTRUCTIONS]