2023 Mathematics

Higher - Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2023
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.

$$
\begin{aligned}
x^{2}+5 x+7 & =9 x+4 \\
-x-4 x+3 & =0 \\
(x-3)(x-1) & =0
\end{aligned}
$$

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{lll}
& \bullet^{5} & \bullet^{6} \\
\bullet^{5} & x=2 & x=-4 \\
\bullet^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4$ Vertical: ${ }^{5} x=2$ and $y=5$
$\bullet^{6} y=5$ and $y=-7 \quad \bullet^{6} x=-4$ and $y=-7$
You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$. or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 144 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(l) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example
$\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as
$\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$=2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$ gains full credit
- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scoredout working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking instructions for each question

	Generic scheme	Illustrative scheme	Max mark
1.	- ${ }^{1}$ express second term in differentiable form -2 differentiate one term -3 complete differentiation	-1 $\ldots-10 x^{-4}$ stated or implied by \bullet^{3} -2 $\frac{5}{3} x^{\frac{2}{3}} \ldots$ or $\ldots+40 x^{-5}$ - $\frac{5}{3} x^{\frac{2}{3}}+40 x^{-5}$	3
Notes:			
1. Where candidates "differentiate over two lines" see Candidates A and B. 2. \bullet^{3} is only available for differentiating a term with a negative index. 3. Where candidates attempt to integrate throughout, only \bullet^{1} is available.			
Commonly Observed Responses:			
Candidate A - differentiating over two lines$\begin{aligned} & y=x^{\frac{5}{3}}-\frac{10}{x^{4}} \\ & y=\frac{5}{3} x^{\frac{2}{3}}-10 x^{-4} \\ & y=\frac{5}{3} x^{\frac{2}{3}}+40 x^{-5} \end{aligned}$		Candidate B - differentiating over two lines$\begin{aligned} & y=x^{\frac{5}{3}}-\frac{10}{x^{4}} \\ & \chi=\frac{5}{3} x^{\frac{2}{3}}-10 x^{-4} \\ & \chi=\frac{5}{3} x^{\frac{2}{3}}+40 x^{-3} \end{aligned}$	
Candidate C$\frac{5}{3} x^{\frac{2}{3}}+40 x^{-5}+c \quad \bullet^{3} x$			

Question		Generic scheme	Illustrative scheme	Max mark
2.			\bullet^{1} find midpoint of PQ	$\bullet^{1}(4,3)$

Question		Generic scheme	Illustrative scheme	Max mark	
4.	(a)	$\bullet \bullet^{1}$ find $\cos p$	$\bullet \frac{3}{5}$	1	
			\bullet^{2} find $\cos q$	$\bullet^{2} \frac{3}{\sqrt{45}}\left(=\frac{1}{\sqrt{5}}\right)$	1

Notes:

1. Accept $\frac{3}{3 \sqrt{5}}$ for \bullet^{2}.

Commonly Observed Responses:

(b)	- ${ }^{3}$ select appropriate formula and express in terms of p and q - ${ }^{4}$ substitute into addition formula - ${ }^{5}$ evaluate $\cos (p+q)$	${ }^{3} \cos p \cos q-\sin p \sin q$ - $4 \frac{3}{5} \times \frac{3}{\sqrt{45}}-\frac{4}{5} \times \frac{6}{\sqrt{45}}$ $\cdot{ }^{5}-\frac{3}{\sqrt{45}}\left(=-\frac{1}{\sqrt{5}}\right)$	3
Notes:			
2. Award \bullet^{3} for candidates who write $\cos \left(\frac{3}{5}\right) \times \cos \left(\frac{3}{\sqrt{45}}\right)-\sin \left(\frac{4}{5}\right) \times \sin \left(\frac{6}{\sqrt{45}}\right)$			

3. For any attempt to use $\cos (p+q)=\cos p \pm \cos q, \bullet^{4}$ and \bullet are unavailable.
4. ${ }^{5}$ is only available if either the surd part or the non-surd part of the fraction is simplified as far as possible. Accept $-\frac{3}{\sqrt{45}},-\frac{\sqrt{45}}{15},-\frac{15}{15 \sqrt{5}}$ or answers obtained on follow through which do not require simplification. Do not accept $-\frac{15}{5 \sqrt{45}}$.
5. \cdot^{5} is only available for an answer expressed as a single fraction.

Commonly Observed Responses:

	Generic scheme	Illustrative scheme	Max mark
5.	- ${ }^{1}$ use the discriminant -2 apply condition and express in standard quadratic form - ${ }^{3}$ process for p	-1 $(3 p-2)^{2}-4 \times 2 \times p$ - $2 p^{2}-20 p+4=0$ - $\frac{2}{9}, 2$	3

1. Where candidates states an incorrect condition, \bullet^{2} is not available. However, \bullet^{3} is available for finding the roots of the quadratic - see Candidate B.
2. Where x appears in any expression, no further marks are available.

Commonly Observed Responses:

Candidate A

(For equal roots) $b^{2}-4 a c=0$
$(3 p-2)^{2}-4 \times 2 \times p$
${ }^{1} \downarrow$
$9 p^{2}-20 p+4$
$p=\frac{2}{9}, 2$

Candidate B

(For equal roots) $b^{2}-4 a c>0 \quad \bullet^{2} x$
$(3 p-2)^{2}-4 \times 2 \times p$
$\bullet^{1} \checkmark$
$9 p^{2}-20 p+4=0$
$p=\frac{2}{9}, 2$

- \square_{1}

Question		Generic scheme	Illustrative scheme	Max mark
6.		- ${ }^{1}$ express second term in integrable form -2 integrate one term - ${ }^{3}$ integrate other term - ${ }^{4}$ complete integration	-1 $\ldots-6 x^{\frac{1}{2}}$ - $2 \frac{2}{6} x^{6} \ldots$ or $\ldots-\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ -3 $\ldots-\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ or $\frac{2}{6} x^{6} \ldots$ - $\frac{1}{3} x^{6}-4 x^{\frac{3}{2}}+c$	4

1. The mark for integrating the final term is only available if candidates integrate a term with a fractional index.
2. Do not penalise the appearance of an integral sign and/or $d x$ throughout.
3. Do not penalise the omission of ' $+c$ ' at $\bullet{ }^{2}$ or $\bullet{ }^{3}$.
4. All coefficients must be simplified at \bullet^{4} stage for \bullet^{4} to be awarded.
5. Accept $\frac{x^{6}-12 x^{\frac{3}{2}}}{3}+c$ for \bullet^{4} but do not accept $\frac{2 x^{6}-24 x^{\frac{3}{2}}}{6}+c$.
6. \bullet^{2}, \bullet^{3} and \bullet^{4} are not available within an invalid strategy.

Commonly Observed Responses:

Candidate A

Question		Generic scheme	Illustrative scheme	Max mark
7.	(a)	- ${ }^{1}$ use laws of logs -2 evaluate log	$\begin{aligned} & \cdot \log _{2} \frac{5}{40} \\ & \cdot{ }^{2}-3 \end{aligned}$	2
Notes:				
1. Do not penalise the omission of the base of the logarithm at $\bullet{ }^{1}$. 2. Correct answer with no working, award $0 / 2$.				
Commonly Observed Responses:				
Candidate A - introducing a variable$\begin{aligned} & \log _{2}\left(5 \times \frac{1}{40}\right) \\ & \log _{2} \frac{1}{8} \\ & 2^{x}=\frac{1}{8} \\ & x=-3 \end{aligned}$				
	(b)	-3 state range	- ${ }^{3} 0<a<1$	1
Notes:				
3. At \bullet^{3} accept " $a>0$ and $a<1$ " or " $a>0, a<1$ ".				
Commonly Observed Responses:				

Notes:

1. For a numerical approach award $0 / 6$.
2. \bullet^{2} is only available if ' $=0$ ' appears at the \bullet^{2} stage or in working leading to $\bullet^{\mathbf{3}}$, however see Candidates A and B .
3. Candidates who equate their derivative to 0 , may use division by 3 as a strategy - see candidates B, C and D .
4. \bullet^{3} is available to candidates who factorise their derivative from \bullet^{2} as long as it is of equivalent difficulty.
5. \bullet^{3} and \bullet^{4} may be awarded vertically.
6. \bullet^{5} is not available where any errors are made in calculating values of $f^{\prime}(x)$.
7. ${ }^{5}$ and \bullet^{6} may be awarded vertically.
8. ${ }^{6}$ is still available in cases where a candidates table of signs does not lead legitimately to a maximum/minimum shape.
9. Candidates may use the second derivative - see Candidates E and F .
10. Accept "max when $x=-3$ " and " m in when $x=1$ " for \bullet^{6}.

Commonly Observed Responses:

Candidate A

Stationary points when $f^{\prime}(x)=0$

Candidate B

Stationary points when $f^{\prime}(x)=0$

$$
\begin{array}{ll}
f^{\prime}(x)=3 x^{2}+6 x-9 & \bullet \downarrow \downarrow \bullet^{2} \downarrow \\
\vdots & \\
f_{x=-3,1}^{\prime}(x)=(x+3)(x-1) & \\
\underbrace{3} \checkmark
\end{array}
$$

Candidate D - derivative never equated to 0

$3 x^{2}+6 x-9$
$x^{2}+2 x-3=0$
$x=-3,1$
$\bullet^{1} \checkmark \bullet^{2} \wedge$
$\cdot{ }^{3} \checkmark_{1}$

Question	Generic scheme		Illustrative scheme		Max
8. (continued)					
Commonly Observed Responses:					
Candidate E - second derivative$f^{\prime \prime}(x)=6 x+6$			Candidate F - second derivative$f^{\prime \prime}(x)=6 x+6$		
- ${ }^{\text {b }}$	$\cdot^{6} \checkmark$			${ }^{6} \checkmark$	
$f^{\prime \prime}(-3)<0$	$f^{\prime \prime}(1)>0$	$\bullet{ }^{5} \checkmark$	$f^{\prime \prime}(-3)=-12$,	$f^{\prime \prime}(1)=12$	$\cdot{ }^{5}$
so max at (-3,32	so min at (1,0)	$\bullet \checkmark$	$\begin{aligned} & -12<0 \\ & \text { so } \max \text { at }(-3,32) \end{aligned}$	$\begin{aligned} & 12>0 \\ & \text { so min at }(1,0) \end{aligned}$	$\bullet \checkmark$

For the table of signs for a derivative, accept:

For the table of signs for a derivative, accept:

x	\rightarrow	-3	\rightarrow	1	\rightarrow
$f^{\prime}(x)$	+	0	-	0	+
Slope or shape					

Since the function is continuous $-3 \rightarrow 1$ is acceptable

x	a	-3	b	1	c
$f^{\prime}(x)$	+	0	-	0	+
Slope or shape		-			

Since the function is continuous $-3<b<1$ is acceptable

- For this question do not penalise the omission of ' x ' or the word 'shape'/'slope'.
- Stating values of $f^{\prime}(x)$ is an acceptable alternative to writing ' + ' or ' - ' signs.
- Acceptable variations of $f^{\prime}(x)$ are: $f^{\prime}, \frac{d f}{d x}, \frac{d y}{d x}, 3 x^{2}+6 x-9$ and $3(x+3)(x-1)$ but NOT $x^{2}+2 x-3$ or $(x+3)(x-1)$.

Question Generic scheme	Illustrative scheme	Max mark
9.(continued)		
Commonly Observed Responses:		
Candidate A - reflection only $\bullet^{1} \checkmark 0^{2} \times 0^{3} x$	Candidate B-translation only $\bullet^{1} \times \bullet^{2} \times 0^{3} x$	
Candidate C - incorrect order of transformations $\bullet^{2} x \bullet^{1} \nabla_{1} \bullet^{3} x$	Candidate D - rotation	

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	-1 use -5 in synthetic division or evaluation of quartic - ${ }^{2}$ complete division/evaluation and interpret result	$\begin{array}{c\|lllll} -5 & 1 & 3 & -7 & 9 & -30 \\ & & & \end{array}$ or $\begin{aligned} & (-5)^{4}+3 \times(-5)^{3}-7 \times(-5)^{2} \\ & +9 \times(-5)-30 \end{aligned}$ \bullet^{2} Remainder $=0 \therefore(x+5)$ is a factor OR $f(-5)=0 \therefore(x+5)$ is a factor	2
Notes:				

1. Communication at \bullet^{2} must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before \bullet^{2} can be awarded.
2. Accept any of the following for \bullet^{2} :

- ' $f(-5)=0$ so $(x+5)$ is a factor'
- 'since remainder $=0$, it is a factor'
- the ' 0 ' from any method linked to the word 'factor' by 'so', 'hence', \therefore, \rightarrow, \Rightarrow etc.

3. Do not accept any of the following for \bullet^{2} :

- double underlining the ' 0 ' or boxing the ' 0 ' without comment
- ' $x=-5$ is a factor', '... is a root'
- the word 'factor' only, with no link.

Question		Generic scheme	Illustrative scheme	Max mark
10.	(b)	- ${ }^{3}$ identify cubic and attempt to factorise - ${ }^{4}$ find second factor - ${ }^{5}$ identify quadratic -6 interpret lack of solutions of quadratic - ${ }^{7}$ state solutions	${ }^{3}$ eg or leading to $(x-2)$ or $x=2$ - ${ }^{5} x^{2}+3$ -6 $b^{2}-4 a c=-12<0$ \therefore no (further real) solutions OR $x^{2}=-3$ or \therefore no (further real) solutions ${ }^{7} \quad x=-5, x=2$	5
Notes:				

4. Candidates who arrive at $(x+5)(x-2)\left(x^{2}+3\right)$ by using algebraic long division or by inspection gain $\bullet^{\mathbf{3}}, \bullet^{4}$ and \bullet^{5}.
5. Evidence for \bullet^{6} may appear in the quadratic formula.
6. At \bullet^{6} accept interpretations such as "no further roots", "no solutions" and "cannot factorise further" with justification.
7. At • ${ }^{6}$ accept $x=\sqrt{-3}$ leading to "not possible" and "not real".
8. Where there is no reference to $b^{2}-4 a c$ accept ' $-12<0$ so no real roots' with the remaining roots stated for \bullet^{6} - see candidates E and F.
9. Do not accept any of the following for \bullet^{6} :

- $(x+5)(x-2)\left(x^{2}+3\right)$ no further roots/cannot factorise further.
- $(x+5)(x-2)(\ldots \quad .).(\ldots$...) no further roots/cannot factorise further.

10. Where the quadratic factor obtained at \bullet^{5} can be factorised, \bullet^{6} and \bullet^{7} are not available.
11. \bullet^{7} is only available where \bullet^{6} has been awarded.

Question		Generic scheme	Illustrative scheme	Max
11.	(b)	-4 identify boundaries and shade area		1
Notes:				
Commonly Observed Responses:				

Question			Generic scheme	Illustrative scheme	Max
13.	(a)	(i)	${ }^{1}$ 1 state exact value	- ${ }^{1} \sqrt{3}$	1
		(ii)	\bullet^{2} interpret notation - ${ }^{3}$ state expression for $f(g(x))$	- $2 f(2 x)$ or $2 \sin (g(x))$ $\bullet^{3} 2 \sin 2 x$	2

Notes:

1. For $f(g(x))=2 \sin 2 x$ without working, award both \bullet^{2} and \bullet^{3}.
2. Working for (a)(ii) may be found in (a)(i)

Commonly Observed Responses:

Candidate A
(a)(ii) $f(g(x))=4 \sin x \quad \bullet^{2} \times \bullet^{3} \quad \square_{1}$

Candidate B - Beware of " 2 attempts"
$f(g(x))=2 \sin x \quad \bullet^{2} \times \bullet^{3} \times$
$f(2 x)=2 \sin 2 x$

$\bullet^{4} \frac{\mathbf{1}}{\mathbf{6}}$	$\mathbf{1}$
$\bullet^{5} 2 \times 2 \sin p \cos p$ or	$\mathbf{3}$

- $2 \times 2 \sin p \cos p$ or 3 $4 \sin p \cos p$ stated explicitly
- $6 \frac{\sqrt{35}}{6}$
. $72 \times 2 \times \frac{1}{6} \times \frac{\sqrt{35}}{6}$
leading to $\frac{\sqrt{35}}{9}$

Notes:

1. \bullet^{5} is not available for expansions which do not involve $p . \bullet^{6}$ and \bullet^{7} are still available. However, accept $\sin ^{-1}\left(\frac{1}{6}\right)$ in place of p-see Candidate C.
2. \bullet^{7} is only available as a consequence of substituting into a valid formula from \bullet^{5}.
3. Do not penalise trigonometric ratios which are less than -1 or greater than 1 throughout this question.

Commonly Observed Responses:

Candidate C
$f(g(p))=4 \sin \left(\sin ^{-1}\left(\frac{1}{6}\right)\right) \cos \left(\sin ^{-1}\left(\frac{1}{6}\right)\right) \cdot{ }^{5} \downarrow$
$4 \times \frac{1}{6} \times \frac{\sqrt{35}}{6}$
$\frac{\sqrt{35}}{9}$$\bullet^{6} \downarrow$

