SQA Revision

National 5 Maths Check List

Apps 1.1 : Applying trigonometric skills to triangles which do not have a right angle.

Area of a triangle using trigonometry.

Using the Sine Rule.

Using the Cosine Rule to find a side.

Using the Cosine Rule to find an angle.

Using Bearings

Apps 1.2 : Applying geometric skills to vectors.

Scalars and Vectors.	
Components.	
Magnitude.	
Position vectors.	
Zero vector.	
Equal vectors.	
Adding vectors.	
Subtracting vectors.	
Finding 3D co-ordinates.	
Using 3D co-ordinates.	

$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ has magnitude } |\mathbf{v}| = \sqrt{x^2 + y^2 + z^2}$$

For the points
$$A(x_A, y_A)$$
 $B(x_B, y_B)$,
 $\overrightarrow{AB} = \begin{pmatrix} x_B \\ y_B \end{pmatrix} - \begin{pmatrix} x_A \\ y_A \end{pmatrix}$

Notes

Apps 1.3: Applying numerical skills to fractions and percentages.

Back / reverse percentage.	let $x = \text{original cost}$, so 100% $x = \text{original cost}$
Appreciation.	selling cost = $x + 17.5\% x = 117.5\% x$
Depreciation.	\Rightarrow selling cost = $\frac{117.5x}{100}$ = 1.175x
Compound interest.	$\Rightarrow £150 = 1.175x$
Adding/subtracting fractions.	$\Rightarrow \frac{150}{1.175} = x$
Multiplying fractions.	$\Rightarrow 127.659 = x$
Dividing fractions.	$\Rightarrow x = £127.66$ The pre VAT price is £127.66
Calculating fractions of amounts.	
Algebraic fractions.	

Apps 1.4 : Applying statistical skills to analysing data.

Mean/Median/Mode/Range.	Maths Paper 1	\top	7		
5 figure summary.	30 40	50	70	80	
Inter quartile range.	Paper 2				-
SIQR (Semi Inter Quartile Range).	20	50	70	80	100
Box plot.	0 10 20 30 40	50 6	0 70	80	90 100
Standard Deviation.	0 10 20 30 10				,,,

© Alexander Forrest www.mathsmutt.co.uk
Jan 2017

E&F 1.1 : Applying numerical skills to simplify surds/ expressions using the laws of indices.

Rules for surds.	$\frac{a}{\sqrt{b}} = \frac{a \times \sqrt{b}}{\sqrt{b} \times \sqrt{b}} = \frac{a \sqrt{b}}{b}$
Simplifying surds.	$AD AD \times AD D$
Rationalising surds.	
Using surds for exact value answers.	
Laws of Indices.	
Manipulating indices.	$\frac{a}{b+\sqrt{c}} = \frac{a}{b+\sqrt{c}} \times \frac{(b-\sqrt{c})}{(b-\sqrt{c})}$ note this is multiplying by 1
	$\frac{1}{b+\sqrt{c}} - \frac{1}{b+\sqrt{c}} \wedge \frac{1}{(b-\sqrt{c})}$ note this is intriduplying by T
	$=\frac{a(b-\sqrt{c})}{c}$

E&F 1.2 : Applying algebraic skills to manipulate expressions.

Factors.	$a^2-b^2=(a-b)(a+b)$
Removing single brackets.	
Removing pairs of brackets.	
Factorising using common factors.	
The difference of two squares.	(a + b)(c + d)
Completing the square.	(4 / 5)(6 / 4)

,

Volume of a pyramid. Significant figures.

E&F 1.3 : Applying algebraic skills to	algebraic f	ractions. $\frac{1}{x} + \frac{2}{3x} = \frac{3x + 2x}{3x^2}$
Algebraic fractions.		$=\frac{5x}{3x^2}$
Solving equations containing algebraic fractions.	Ш	$=\frac{5x}{2x^2}$
Adding and subtracting algebraic fractions.		$=\frac{5x}{3x^2}$ $=\frac{5}{3x}$
E&F 1.4: Applying geometric skills lin	ked to the	use of formulae.
Using the gradient formula.		
Circle - arcs, sectors overview.		Fraction of circle = $\frac{angle \ at \ centre}{360 \circ}$
Circle - calculating length of arcs.		length of arc
Circle - calculating the area of a sector.		$=\frac{\cos g \cos g}{\pi d}$
Volume of a sphere.		_ area of sector
Volume of a cone.		$=\frac{\pi r^2}{\pi}$

© Alexander Forrest www.mathsmutt.co.uk
Jan 2017

Rel 1.1: Applying algebraic skills to linear equations.

Rel 1.2 : Applying algebraic skills to graphs of quadratic relationships.

Quadratic graphs.

Sketching quadratic functions.

Graph sketching from completed square form.

Rel 1.3: Applying algebraic skills to quadratic equations.

Quadratic equations. \Box The discriminant of the Quadratic equation ax² + bx + c = 0 is b^2 - 4ac Using the quadratic formula. \Box

Notes

Rel 1.4 : Applying geometric skills to lengths, angles and similarity.

The theorem of Pythagoras.	6
Finding the length of the hypotenuse.	
Finding the length of a shorter side.	
The converse of the theorem of Pythagoras.	
Hidden Pythagoras.	
Co-ordinates and Pythagoras.	A
Circle - Pythagoras in a circle.	
Circle – the angle in a semi-circle.	
Scale factor.	Scaled Area = $(\text{scale factor})^2 \times \text{original area}$
Similar shapes.	()
Similar triangles.	Scaled Volume = $(\text{scale factor})^3 \times \text{original volume}$
Scaled area.	Sedica Volume (Sedic Meter) × original volume
Scaled volume.	

Rel 1.5: Applying trigonometric skills to graphs and identities.

Notes