SQA Higher

Revision Checklist

Apps 1.1 : Applying algebraic skills to rectilinear shapes.

Gradients
m = tanθ
Distance Formula
Midpoint Formula
Parallel lines
Perpendicular lines
y = mx + c
y - b = m(x - a)
Ax + By + C = 0
Collinearity
Intersection of straight lines
Perpendicular bisectors
Altitudes of a triangle
Centroids, circumcentres
Circumcircle, concurrency
Orthocentre
Medians of a triangle

Apps 1.2 : Applying algebraic skills to circles.

$x^2 + y^2 = r^2$
Centre (a,b) $(x-a)^2 + (y-b)^2 = r^2$,
General equation $x^2 + y^2 + 2gx + 2fy + c=0$
Tangents to a circle
Intersections of lines and circles

Apps 1.3 : Applying algebraic skills to sequences.

nth term of sequence	Proof
Linear recurrences un+1=mun+c	If a limit exists then $\lim_{n\to 0} u_n = L$
Convergence / Divergence	$\lim_{n\to 0} u_{n+1} = L$
Calculating limits L=c/(1-m)	$u_{n+1} = au_n + b$
Arithmetic sequence un+1=un+b	$\therefore L = aL + b$
Geometric sequence un+1=aun	$\Rightarrow L - aL = b$
Fibonacci sequences un+2=un+1+un	$\Rightarrow L(1-a) = b$ $\Rightarrow L = \frac{b}{(1-a)}$
	(1-a)

Apps 1.4 : Applying calculus skills to optimisation and area.

E&F 1.1 : Applying algebraic skills to logarithms and exponentials

Exponential growth and decay	$\log_a x = \frac{\log_b x}{\log_b a}$
The number e	$\log_a x = \frac{1}{\log_a a}$
$Y = a^x$ $x = log_a y$	10 B b Cr
Log laws	
Solving exponential equations	
Using graphs to solve y = ax ⁿ or y=ab ^x	

E&F 1.2 : Applying trigonometric skills to manipulating

sin(A+B)= <i>sin</i> AcosB+ <i>cos</i> AsinB
sin(<i>A-B</i>)= <i>sinA</i> cos <i>B-cosA</i> sin <i>B</i>
$\cos(A+B)=\cos A\cos B-\sin A\sin B$
$\cos(A-B)=\cos A\cos B+\sin A\sin B$

Notes	

	y=2x+2
Set notation Domains Codomains Range Image Function Composite functions Inverse functions Exponential functions Logarithmic functions Standard graphs Graph of y = f(x) + a	y=2x+2 (0.3) y=1/2x-1 (1.0) (1.0) (0.0)
Graph of $y = f(x) + a$ Graph of $y = f(x+a)$ Graph of $y = -f(x)$ Graph of $y = f(-x)$ Graph of $y = kf(x)$ Graph of $y = f(kx)$ Exponential graphs Logarithmic graphs Period & amplitude	INOLES
Trigonometric graphs Graph of y = $acos(nx)$ Graph of y = $asinx$ Graph of y = $sin(ax+b)$ Graph of y = $cos(ax+b)$ Graph of y = $(1-sinx)^2 + 2$	

E&F 1.4: Applying geometric skills to vectors

- 3D trigonometry 3D co-ordinates Scalars and vectors Vectors and directed line segments Magnitude of vectors Addition, subtraction of vectors Multiplicatipon by a scalar Position vector Section formula Unit vectors Scalar product a.b
- Distributive law for scalar product

R&C 1.1 : Applying algebraic skills to solve equations

R&C 1.2 : Applying trigonometric skills to solve equations.

Radians Exact values Revision basics, sine rule, cosine rule, area of triangle.	
Compound angles:- cos(A+B) cos(A - B)	
sin(A+B) sin(A - B) Sin2A Cos2A	
Trigonometric equations Further trig equations Graphs y=sin(x+α), y=sin(x-α) Graphs y=cos(x+α), y=cos(x-α)	

Jan 2017

Isosceles triangle

Rads	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Degrees	30°	45°	60°	90°
Sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

R&C 1.3 : Applying calculus skills of differentiation.

gradient of tangent to curve notation dy/dx and f'(x)
if $f(x) = x^{n}$, $f'(x) = nx^{n-1}$
if $f(x) = g(x) + h(x)$, $f'(x) = g'(x) = h'(x)$
if f(x) = kg(x), f'(x) = kg'(x) k is a constant
stationary points
maximum / minimum turning points
horizontal point of inflexion
Differentiate trig functions
Chain rule for differentiation

R&C 1.4 : Applying calculus skills of integration.

y (method
y=f⊗ •b
$Area = \int_{a}^{b} f(x) dx$
a b

