SQA Higher

Revision Checklist

Apps 1.1 : Applying algebraic skills to rectilinear shapes.

Gradients
$\mathrm{m}=\tan \theta$
Distance Formula
Midpoint Formula
Parallel lines
Perpendicular lines
$y=m x+c$
$y-b=m(x-a)$

$A x+B y+C=0$
Collinearity
Intersection of straight lines
Perpendicular bisectors
Altitudes of a triangle
Centroids, circumcentres
Circumcircle, concurrency
Orthocentre
Medians of a triangle

Apps 1.2 : Applying algebraic skills to circles.

$x^{2}+y^{2}=r^{2}$
Centre $(a, b) \quad(x-a)^{2}+(y-b)^{2}=r^{2}$,
General equation $x^{2}+y^{2}+2 g x+2 f y+c=0$
Tangents to a circle
Intersections of lines and circles

Apps 1.3 :Applying algebraic skills to sequences.

nth term of sequence
Linear recurrences $u_{n+1}=m u_{n+c}$
Convergence / Divergence
Calculating limits $\mathrm{L}=\mathrm{c} /(1-\mathrm{m})$
Arithmetic sequence $u_{n+1}=u_{n+b}$
Geometric sequence $u_{n+1}=a u_{n}$
Fibonacci sequences $u_{n+2}=u_{n+1}+u_{n}$

Proof

If a limit exists then $\lim _{n \rightarrow 0} u_{n}=L$

$$
\therefore \lim _{n \rightarrow 0} u_{n+1}=L
$$

$$
u_{n+1}=a u_{n}+b
$$

$\therefore \quad L=a L+b$
$\Rightarrow \quad L-a L=b$
$\Rightarrow \quad L(1-a)=b$
$\Rightarrow \quad L=\frac{b}{(1-a)}$

Apps 1.4 : Applying calculus skills to optimisation and area.

Area under trig curves
Area under a curve
Area between two curves

E\&F 1.1 : Applying algebraic skills to logarithms and exponentials

Exponential growth and decay
The number e
$Y=a^{x} \quad x=\log _{a} y$

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

Log laws
Solving exponential equations
Using graphs to solve $y=a x^{n}$ or $y=a b^{x}$

E\&F 1.2 : Applying trigonometric skills to manipulating

 expressions.| Rcos $(x-\alpha)$ | \square | $\sin (A-B)=\sin A \cos B-\cos A \sin B$ |
| :--- | :--- | :--- |
| $R \cos (x+\alpha)$ | \square | |
| $R \sin (x-\alpha)$ | \square | $\cos (A+B)=\cos A \cos B-\sin A \sin B$ |
| $R \sin (x+\alpha)$ | \square | |
| Maxima and minima | \square | $\cos (A-B)=\cos A \cos B+\sin A \sin B$ |
| Trig equations | \square | |

E\&F 1.3 : Applying algebraic and trigonometric skills to

 functions.

E\&F 1.4: Applying geometric skills to vectors

3D trigonometry
3D co-ordinates
Scalars and vectors
Vectors and directed line segments
Magnitude of vectors
Addition, subtraction of vectors
Multiplicatipon by a scalar
Position vector
Section formula
Unit vectors
Scalar product a.b
Distributive law for scalar product

$$
\mathbf{p}=\frac{n}{n+m} \mathbf{a}+\frac{m}{n+m} \mathbf{b}
$$

R\&C 1.1 : Applying algebraic skills to solve equations

Polynomials
Nested method
Synthetic division
Remainder theorem
Factor theorem
Solving polynomial equations
Approximate roots of $f(x)$
Solving quadratics by :-
....Factorisation
....Completing the square
....Quadratic formula
....graphical means
Tangents to curves
Discriminant
Solving quadratic inequalities

	x	a	b	c
\square		$a x$	$(a x+b) x$	$((a x+b) x+c) x$
\square				
\square	a	$a x+b$	$(a x+b) x+c$	$((a x+b) x+c) x+d$

R\&C 1.3 : Applying calculus skills of differentiation.

gradient of tangent to curve
notation $d y / d x$ and $f^{\prime}(x)$
if $f(x)=x^{n}, f^{\prime}(x)=n x^{n-1}$
if $f(x)=g(x)+h(x), f^{\prime}(x)=g^{\prime}(x)=h^{\prime}(x)$
if $f(x)=k g(x), f^{\prime}(x)=k g^{\prime}(x) \quad k$ is a constant stationary points
maximum / minimum turning points
horizontal point of inflexion
Differentiate trig functions
Chain rule for differentiation

R\&C 1.4 : Applying calculus skills of integration.

Standard integrals Integrate trig functions

Anti -differentiation
Differential equations Integration using formula Definite integrals

