Whole Numbers

S2 A (Easier)

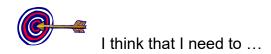
(NMM)

Heading	Description	Completed	I Can Do this © 🕮 🖄
Place value	Writing numbers in units, tens, hundreds and thousands. e.g. the number 3 thousand, two hundred and five is 3205.		
Ordering Numbers	Putting numbers in order.		
Rounding	Rounding to the nearest 10, 100 and 1000. e.g. 128 rounded to the nearest hundred is 100.		
Addition and subtraction	127 17500 + <u>390</u> - <u>2832</u> 517 14668		
Multiplying by single digit numbers	$ \begin{array}{r} 174 \\ \times \underline{3} \\ 5^2 2^1 2 \end{array} $		
Multiplying by 10 and 100	748 x 10 = 7480 748 x 100 = 74800		
Dividing by single digit numbers	$42 \div 3 = 3) 4^{1}2$		
Dividing by 10 and 100	74800 ÷10 = 7480 74800 ÷100 = 748		
BODMAS – Order of operations	$16 - 3 \times 5 = 16 - 15$ =1		

Sequences and Formulae

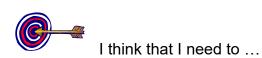
S2 A (Easier)

(NMM)


Heading	Desci	ription	Completed	I Can Do this ☺ ≌ ⊗
Sequences	Continuing sequences a e.g. 3,7,1115,19	-		
Simple formulae	Length of side of square (l) in cm 1 2 3 4 Formula : The perimete times the length of a sid $P = 4 \times l$ P = 4l	Perimeter of square (P) in cm 4 8 12 16 r of a square equals 4		

Symmetry

(SPM)


Heading	Description	Completed	I Can Do this ☺ ☺ ⊗
Lines or axes of symmetry	Line of symmetry		
Rotational Symmetry	e.g. f_{D} f_{D} The rectangle has $\frac{1}{2}$ turn symmetry		
Tessellations	it has rotational symmetry of order 2		

Fractions

(NMM)

Heading	Description	Completed	I Can Do this © 😐 🖄
Understanding fractions	The bar has 5 equal stripes. 3 of the stripes are black. <u>3</u> of the bar is black 5		
	2 of the bar is white 5		
Equivalent	Multiply numerator and denominator by the same number.		
fractions	e.g. $\frac{1}{3} = \frac{4}{12}$ $\frac{9}{10} = \frac{63}{70}$ $\frac{3}{4} = \frac{15}{20} = \frac{21}{28}$		
Calculating	To find a fraction of a quantity, divide by the number on the bottom of the fraction. $\frac{1}{4}$ of £12 = £12 ÷4 = £3		
Fractions & Decimals	e.g. $\frac{\frac{1}{2} = 1 \div 2 = 0.5}{\frac{2}{5} = 5 \sqrt{2.20}}$		
Multiplying fractions	e.g $\frac{2}{5} \times 15 = \frac{30}{5} = 6$ $\frac{3}{4} \times \frac{2}{3} = \frac{3 \times 2}{4 \times 3} = \frac{6}{12} = \frac{1}{2}$ or $\frac{\frac{1}{2}}{\frac{2}{4}} \times \frac{\frac{1}{3}}{\frac{3}{1}} = \frac{1 \times 1}{2 \times 1} = \frac{1}{2}$		

Angles

S2 A (Easier)

(SPM)

			I Can
Heading	Description	Completed	Do this ☺ ≌ ⊗
Turning	A quarter turn is called a right angle. A half turn is 2 right angles. A complete turn is 4 right angles.		
Naming angles	An angle is named by its letters. e.g. Angle ABC is written \angle ABC or ABC $A^{*}Arm$ B C Vertex		
Types of angles	Acute Right (perpendicular) Obtuse Straight		
Measuring Angles	Measuring angles using a protractor.		
Drawing angles	Draw angles using a protractor.		
Related Angles	Complementary angles add up to 90° Supplementary angles add up to 180°		
Compass Bearings	Points of the compass		
	3 figure bearings s East = 090°		

Perimeter and Area

(NMM)

Heading	Description	Completed	I Can Do this © 😐 🖄
Perimeter Distance around the edge of a shape.	5 cm 3 cm 12 cm Perimeter = 3 + 5 + 5 + 12 = 25 cm		
Area The amount of surface a shape covers	$Area = 10 \text{ cm}^2$		
Area of a triangle	Area = 1/2x base x vertical height		
Compound shapes	To find the area of a compound shape, split it into regular shapes and add each individual area.		

Coordinates

(SPM)

Heading	Description	Completed	I Can Do this © 😄 🕫
Reading Coordinates Read along the x - axis, then up the y - axis	e.g. A(3,1) B(2,5)		
Plotting Coordinates	To Plot E(4,2), count 4 units to the right of the origin, then go 2 units up.		

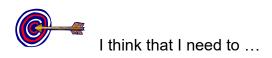
2D Shape

S2 A (Easier)

(SPM)

Heading	Description	Completed	I Can Do this © 😐 🖄
Units of length	10 mm = 1cm 100 centimetres = 1metre 1000 metres = 1 kilometre		
Triangles	Isosceles right angled equilateral scalene		
Vertices, Edges & Faces	Vertex Edge		
Pentagons and Hexagons	A pentagon has 5 sides A hexagon has 6 sides		
The Circle	Radius Diameter Circumference		

<u>Time</u>


(NMM)

Heading	Description	Completed	l Can Do this © ප හි
a.m. and p.m.	5.00 am is 5 o'clock in the morning 5.00 pm is 5 o'clock in the evening		
24 hour Clock	12 hour and 24 hour clock e.g. 9.30 am = 09.30 hrs 9.30 pm = 21.30 hrs		
Time intervals	A film starts at 3.15pm and finishes at 4.05pm. How long does it last ? 3.15 pm to 4.00pm is 45 mins 4.00 pm to 4.05pm is 5 min Total length of time is 50 mins		

Information Handling

Heading	Description	Completed	I Can Do this ☺ ≅ ⊗
Charts and graphs	Reading and drawing bar and line graphs $ \int_{u_{pu}}^{u_{dhs} Test Score} \int_{u_{pu}}^{u_{pu} Hest Score} \int$		
Pie charts	Reading, drawing And interpreting pie charts		
Scattergraphs	Reading and drawing scatter graphs		
Frequency Tables	Model Frequency Avensis 50 Celica 50 Corrolla 100 Landcruiser 150 Yaris 50 Total 400		
Mean	Find the mean of a set of data.		

Percentages

(NMM)

Heading	Description	Completed	I Can Do this © 😐 🖄
Percentage	% means out of 100 e.g. 45% means $\frac{45}{100}$		
Percentages of quantities	<i>e.g.</i> Find 50% of £60 50% of £60 = $\frac{1}{2} \times 60 = 30$		
Changing percentages to fractions and decimals	$83\% = \frac{83}{100} = 0.83$		
Percentages using the calculator	Using the calculator to find percentages		

Decimals

(NMM)

Heading	Description	Completed	I Can Do this ⓒ 딸 왕
Place Value	Writing numbers in hundredths, tenths, units, tens, hundreds and thousands.e.g. 150.2 represents the number made up from one hundred, five tens, no units and 5 tenths		
Ordering	Putting numbers in order		
Rounding	Rounding to nearest whole number and to one decimal point. e.g. 15.63 = 15.6 (1 dp)		
Addition and subtraction of money	examples 2.77 £ 5.68 + $\underline{\text{£ 3.12}}$ -£ $\underline{3.25}$ £ 5.89 £ 2.43		
Multiplying and Dividing	E.g. 3.4 x 2 = 6.8 12.15 ÷3 =4.05		
Multiplying and Dividing by 10	Multiplying and dividing by 10 and 100 e.g. $7.48 \times 10 = 74.8$ $748 \div 100 = 7.48$		
Calculating	Using a calculator for money problems.		

Measurement

(NMM)

Heading	Description	Completed	I Can Do this © 😐 🖄
Length	Reading scales Estimating and measuring length 10 millimetres (mm) = 1 centimetre (cm) 100 centimetres (cm) = 1 metre (m) 1000 metres (m) = 1 kilometre (km)		
Weight	1000 grams (g) = 1 kilogramme (kg) 1000 kilogrammes (kg) = 1 tonne (t)		
Volume	1000 millilitres (ml) = 1 litre (l) e.g. 250 ml = 0.25 l		
Problem solving	Performing calculations with metric units		

3 D Shape

(SPM)

S2 A (Easier)

Heading	Description	Completed	I Can Do this © 🕮 🛞
Vertices, Edges & Faces	Vertex Edge		
Nets	A net can be folded to make a 3D shape		
Angles and Diagonals	Plane AEGC is shown		

I think that I need to ...

C