#### Whole Numbers

### (NMM)

| Heading                                       | Description                                                                                            | Completed | I Can<br>Do<br>this<br>© 🕮 🛞 |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|------------------------------|
| Rounding                                      | Rounding to the nearest 10, 100 and 1000.<br>e.g. 128 rounded to the nearest hundred is 100            |           |                              |
| Rounding to decimal places                    | Rounding to 1 or 2 decimal places<br>e.g. 12.86 rounded to 1 dp is 12.9                                |           |                              |
| Estimating -<br>Working with<br>whole numbers | Finding approximate answers.<br>e.g. 78 x 8 estimate 80 x 8 = 640                                      |           |                              |
| Multiplying by multiples of 10                | e.g. 74 x 20 = 74 x 2 x 10<br>= 148 x 10<br>= 1480                                                     |           |                              |
| Dividing by multiples of 10                   | e.g. $0.27 \div 600 = 0.27 \div 6 \div 100$<br>= 0.045÷100<br>= 0.00045                                |           |                              |
| Multiplying by<br>two digit<br>numbers        | e.g. $36 \times 24 = 36$<br>$\times \frac{24}{144}$ (4 x 36 = 144)<br>$\frac{720}{864}$ (2 x 36 = 720) |           |                              |
| Using a<br>calculator                         | Using a calculator to find answers to sums.                                                            |           |                              |
| BODMAS –<br>Order of<br>operations            | e.g 16 – 3 x 5 = 16 – 15<br>=1                                                                         |           |                              |
| Mental maths                                  | Mental methods for adding and subtracting                                                              |           |                              |



### Sequences, Multiples and Factors

# Free download from www.mathsmutt.co.uk – Not for resale

| Heading                                                  | Description                                                                                                                                    | Completed | Do<br>this<br>© © 8 |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
| Sequences                                                | Continuing sequences and finding rules<br>e.g. 3,7,1115,19 rule is add 4                                                                       |           |                     |
| Multiples<br>and<br>LCM<br>( Lowest common<br>multiple ) | e.g.<br>multiples of 5 are 5, 10, 15, 20,25 ,30,35,40,45,<br>multiples of 8 are 8, 16, 24, 32,40, 48, 56<br>LCM of 5 and 8 is 40               |           |                     |
| Factors and<br>HCF<br>(Highest Common<br>Factor)         | Finding factors of a number.<br>e.g. factors of 12 are 1,2,3,4,6,12<br>factors of 48 are 1,2,3,4,6,8,12,16,24,48<br>The HCF of 48 and 12 is 12 |           |                     |
| Prime Numbers<br>and Prime<br>Factors                    | Prime numbers have exactly two factors<br>e.g. 2,3,5,7<br>The prime factors of 30 are 2, 3,5<br>Since $30 = 5 \times 6 = 5 \times 3 \times 2$  |           |                     |
| Squares and<br>Cubes                                     | E.g. 25 is a square number since $5 \times 5 = 25$<br>125 is a cubic number since $5 \times 5 \times 5 = 125$                                  |           |                     |



I think that I need to ...

### (NMM)

I Can

### **Symmetry**

### S1 C (Harder)

### (SPM)

| Heading                             | Description                                                                                                        | Completed                                               | l Can Do<br>this<br>© ආ හි |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|
| Lines or<br>axes of<br>symmetry     | Line of symmetry                                                                                                   |                                                         |                            |
| Reflection<br>Bilateral<br>symmetry | Reflection is used to complete the missing side<br>of a symmetrical shape.                                         |                                                         |                            |
| Image                               | The reflection of a point or shape is called its image. The image of P is written P'<br>The image of QRS is Q'R'S' |                                                         |                            |
| Rotational<br>Symmetry              | e.g.<br>$ \begin{array}{c}                                     $                                                   |                                                         |                            |
|                                     | it has rotational symmetry of order 2                                                                              | The shape has been rotatated 180° about the fixed point |                            |



### **Fractions**

#### (NMM)

| Heading                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                  | Completed | I Can Do<br>this<br>© © ® |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Equivalent<br>fractions                               | Multiply numerator and denominator by the same number.<br>e.g. $\frac{1}{3} = \frac{4}{12}$ $\frac{9}{10} = \frac{63}{70}$ $\frac{3}{4} = \frac{15}{20} = \frac{21}{28}$                                                                                                                                                                                                                                     |           |                           |
| Simplifying<br>fractions                              | Divide numerator and denominator by the same number<br>e.g. $\frac{12}{30} = \frac{6}{15} = \frac{2}{5}$ $\frac{28}{49} = \frac{4}{7}$                                                                                                                                                                                                                                                                       |           |                           |
| Adding and<br>Subtracting<br>fractions                | Fractions can only be added or subtracted if<br>they have the same denominator<br>e.g<br>$\frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4}$ $\frac{3}{5} + \frac{1}{3} = \frac{9}{15} + \frac{5}{15} = \frac{14}{15}$ $\frac{1}{2} - \frac{1}{4} = \frac{2}{4} - \frac{1}{4} = \frac{1}{4}$ $\frac{3}{5} - \frac{1}{3} = \frac{9}{15} - \frac{5}{15} = \frac{4}{15}$                      |           |                           |
| Calculating a<br>fraction of a<br>quantity            | To find a fraction of a quantity, divide by the<br>denominator then multiply by the numerator.<br>To find $\frac{5}{9}$ of 72, first divide 72 by 9 then multiple by 5<br>$\frac{1}{9}$ of $72 = 72 \div 9 = 8$<br>so $\frac{5}{9}$ of $72 = 8 \times 5 = 40$                                                                                                                                                |           |                           |
| Multiplying<br>fractions<br>Dividing by a<br>fraction | e.g $\frac{2}{5} \times 15 = \frac{30}{5} = 6$<br>$\frac{3}{4} \times \frac{2}{3} = \frac{3 \times 2}{4 \times 3} = \frac{6}{12} = \frac{1}{2}$ or $\frac{\frac{1}{3}}{\frac{2}{3}} \times \frac{\frac{3}{3}}{\frac{3}{1}} = \frac{1 \times 1}{2 \times 1} = \frac{1}{2}$<br>To divide by a fraction, multiple by the reciprocal<br>e.g $60 \div \frac{5}{12} = 60 \times \frac{12}{5} = 12 \times 12 = 144$ |           |                           |



I think that I need to ...

### **Angles**

#### (SPM)

| Heading                | Description                                                                                                                                                                                                               | Completed | I Can<br>Do<br>this<br>© ©<br>® |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------|
| Naming<br>angles       | An angle is named by its letters.<br>e.g. Angle ABC is written $\angle$ ABC or $ABC$<br>$A^{*}Arm$<br>B<br>Vertex<br>C                                                                                                    |           |                                 |
| Types of<br>angles     | Acute Right (perpendicular) Obtuse                                                                                                                                                                                        |           |                                 |
| Related<br>Angles      | Complementary angles add up to 90°<br>Supplementary angles add up to 180°<br>Vertically opposite angles are equal.<br>Corresponding angles are equal<br>Alternate angles are equal<br>Angles in a triangle add up to 180° |           |                                 |
| Angles in<br>a polygon | Interior angles are inside the polygon.<br>Exterior angles are outside the polygon.                                                                                                                                       |           |                                 |



### Negative numbers

#### (NMM)

S1 C (Harder)

| Heading                        | Description                                      | Completed | I Can<br>Do<br>this<br>© 🕮 🖄 |
|--------------------------------|--------------------------------------------------|-----------|------------------------------|
| Integers                       | Integers are positive and negative whole numbers |           |                              |
| Adding<br>positive<br>integers | (-6) + 2 = - 4                                   |           |                              |
| Subtracting                    | 3 - 5 = -2                                       |           |                              |
| positive<br>integers           |                                                  |           |                              |
| Adding<br>negative             | 5 +( -7) = 5 - 7 = -2                            |           |                              |
| integers                       |                                                  |           |                              |
| Subtracting                    | 1 - (-3) = 4                                     |           |                              |
| negative<br>integers           |                                                  |           |                              |



#### **Measurement**

#### (NMM)

| Heading              | Description                                                                                                                                                                                          | Completed | l Can Do<br>this<br>© 😐 🖄 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Length<br>Perimeter  | 100 centimetres = 1 metre<br>10 mm = 1 cm<br>e.g. 254 cm = 2.54 m<br>3m $495$ $495$ $15m$ $150$ $1750$ mm<br>4.5 m<br>Perimeter = Distance all the way<br>around.<br>Make sure units are the same !! |           |                           |
| Weight               | 1000 kilogrammes = 1 tonne<br>1000 grams = 1 kilogramme<br>1000 milligrammes = 1 gramme<br>e.g. 560 g = 0.560 Kg                                                                                     |           |                           |
| Capacity<br>(Volume) | 1 cubic centimetre ( $cm^3$ ) = 1 millilitre (ml)<br>1000 $cm^3$ = 1000 ml = 1 litre<br>1 cubic metre ( $m^3$ ) = 1000 litres<br>e.g. 250 ml = 0.25 l                                                |           |                           |



### **Coordinates**

## S1 C (Harder)

### (SPM)

| Heading                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Completed | I Can Do<br>this<br>© @ Ø |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Cartesian axes                                                                              | The horizontal line is called the $x - axis$ .<br>It is labelled x.<br>The vertical line is called the $y - axis$ .<br>It is labelled y.<br>The point where the $x - axis$ and $y - axis$ cross is called the origin. It is labelled Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                           |
| <b>Reading</b><br><b>Coordinates</b><br>Read along the<br>x – axis, then<br>up the y - axis | $A = \begin{bmatrix} 5 & y \\ 4 & 4 \\ - & -3 \\ - & -3 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2 \\ - & -2$ |           |                           |
| Plotting<br>Coordinates                                                                     | To Plot E( 4,2) , count 4 units to the right of the origin, then go 2 units up.<br>To Plot F( -4,2) , count 4 units to the left of the origin, then go 2 units up.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                           |
| Reflection in a<br>line                                                                     | B<br>B<br>x<br>x<br>1<br>2<br>3<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                           |



I think that I need to ...

### (SPM)

| Heading                                     | Description                                                                                                                                                                                                    | Completed | l Can Do<br>this<br>☺ ☺ ፡፡ |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|
| True<br>Measurements                        | The scale is 1<br>cm to 80 cm<br>The length of the<br>picture is 4.5 cm<br>The true length of<br>the bike is 4.5 x<br>80 = 360 cm or<br>3.6 m                                                                  |           |                            |
| Representative<br>Fractions                 | 1:25 000 means<br>1 unit represents 25 000 units<br>e.g using this scale 30 cm represents<br>$30 \times 25 000 = 750000 \text{ cm}$<br>= 7500  m<br>= 7.5  km                                                  |           |                            |
| Plans and scales                            | A photograph is taken of a painting. The true<br>width of the painting is 90 cm, the width of the<br>phot is 5 cm. Find the scale.<br>Photo Painting<br>5 cm 90 cm<br>÷ 5 ÷ 5<br>1 cm 18 cm<br>Scale is 1 : 18 |           |                            |
| Angles of<br>elevation<br>and<br>Depression | angle of elevation<br>angle of<br>depression                                                                                                                                                                   |           |                            |
| Bearings                                    | <ul> <li>Bearings are always</li> <li>Measured from north</li> <li>Measured clockwise</li> <li>Given as 3 digit figures</li> </ul>                                                                             |           |                            |



I think that I need to ...

#### 2D Shape

### (SPM)

| Heading            | Description                                                                                  | Completed | l Can Do<br>this<br>© ප හි |
|--------------------|----------------------------------------------------------------------------------------------|-----------|----------------------------|
| 2 D Shapes         |                                                                                              |           |                            |
| Triangles          | Isosceles right angled equilateral<br>scalene<br>Acute-angled Right -angled<br>Obtuse-angled |           |                            |
| Area of a triangle | Area = $\frac{1}{2}x$ base x vertical height                                                 |           |                            |
| Quadrilaterals     | Squares<br>Rectangles<br>The Rhombus<br>Kites<br>Parallelograms<br>The Trapezium             |           |                            |



I think that I need to ...

### Time, distance & speed

#### (NMM)

| Heading                        | Description                                                                                                                                                                 | Completed | I Can Do<br>this<br>© 😐 🕫 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| 24 hour                        | Using 12 hour and 24 hour clock notation<br>e g $9.30 \text{ am} = 0930$                                                                                                    |           |                           |
| notation                       | 9.30 pm = 21:30                                                                                                                                                             |           |                           |
| Time<br>intervals              | A film starts at 3.15pm and finishes at<br>4.05pm. How long does it last ?<br>3.15 pm to 4.00pm is 45 mins<br>4.00 pm to 4.05pm is 5 min<br>Total length of time is 50 mins |           |                           |
| Converting<br>units of<br>time | e.g. 70 seconds = 1 minute 10 seconds                                                                                                                                       |           |                           |
|                                | Change 5.2 hrs to hours and minutes                                                                                                                                         |           |                           |
| Converting                     | $0.2hrs = 0.2 \times 60$ mins = 12mins<br>so 5.2hrs = 5hours 12mins                                                                                                         |           |                           |
| fractional<br>units of<br>time | Change 3 hours 15 minutes to hours<br>15 minutes = $\frac{15}{60}$ hrs = 0.25 hrs<br>so 3 hours 15 minutes = 3.25 hrs                                                       |           |                           |
| Distance,<br>Speed and<br>Time | $D = ST \qquad S = \frac{D}{T} \qquad T = \frac{D}{S}$                                                                                                                      |           |                           |



| ( | Η | ) |
|---|---|---|

S1 C (Harder)

| Heading              | Description                                                                                                                                                                    | Completed | I Can Do<br>this<br>© 😐 🖄 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Tables               | Model       Frequency         Avensis       50         Celica       50         Corrolla       100         Landcruiser       150         Yaris       50         Total       400 |           |                           |
| Charts and<br>graphs | Reading and drawing bar and line graphs<br>$I = \frac{Maths Test Score}{0}$                                                                                                    |           |                           |
| Pie charts           | Reading, drawing<br>And interpreting pie charts                                                                                                                                |           |                           |
| Frequency<br>Tables  | Model       Frequency         Avensis       50         Celica       50         Corrolla       100         Landcruiser       150         Yaris       50                         |           |                           |
| Mean and<br>Range    | Find the mean and range of a set of data.<br>Find the mean and range from a frequency<br>table.                                                                                |           |                           |



#### Algebra 1

### S1 C (Harder)

| (NMM | ) |
|------|---|
|------|---|

| Heading                                       | Description                                                                                                                                                                                                                                                                          | Completed | I Can<br>Do this<br>☺ ≌ ⊗ |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Simplifying<br>Expressions<br>Collecting like | An expression uses letters for numbers.<br>Each part of an expression is called a term.<br>5x + 4y has two terms.<br>3a is the same as $3 \times a$<br>a is the same as $1 \times a$<br>To simplify an expression, collect like terms.<br>x + x + 6 = 2x + 6<br>121n - n - 96n = 24n |           |                           |
| terms                                         | 5r +9a –2r + 6a = 3r +15a                                                                                                                                                                                                                                                            |           |                           |
| Evaluating expressions                        | Evaluate 5a – 2b when a =3 and b=5<br>5a -2b<br>=5 x 3 - 2 x 5<br>=15 -10                                                                                                                                                                                                            |           |                           |
| Evaluating<br>formulae                        | A rectangle has length 5cm and breadth 2 cm.<br>Find the area of the rectangle.<br>A=lb l=5cm , b=2cm<br>$A = 5 \times 2$<br>$A = 10 \text{ cm}^2$                                                                                                                                   |           |                           |



#### Ratio

### (NMM)

| Heading                        | Description                                                                                                                                                          | Completed | I Can<br>Do this<br>© © ⊗ |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Ratio                          | The ratio of sunny days to rainy days is<br>2 : 3                                                                                                                    |           |                           |
| Simplifying<br>ratios          | Divide each side by the same number<br>e.g.<br>15 : 5<br>= 3 : 1                                                                                                     |           |                           |
| Ratio and<br>Proportion        | e.g<br>The ratio of girls to boys is 3 : 2<br>How many girls are there when there are 10<br>boys ?<br><u>Girls : Boys</u><br>3 : 2<br>15 : 10<br>There are 15 girls. |           |                           |
| Sharing a<br>given<br>quantity | e.g.<br>Share £20 in the ratio 2:3<br>$\frac{1^{\text{St}} \text{ share } 2^{\text{nd}} \text{ share } Total}{2 3 5}$ 8 12 20                                        |           |                           |



#### 3 D Shape

### (SPM)

| Heading                       | Description                                                                                                | Completed | l Can Do<br>this<br>ⓒ 딸 왕 |
|-------------------------------|------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Vertices,<br>Edges &<br>Faces | Vertex<br>Edge                                                                                             |           |                           |
|                               | Plane AEGC Plane AEGC is shown shown.                                                                      |           |                           |
| Angles and<br>Diagonals       | EG is a face<br>diagonal<br>AG is a space<br>diagonal                                                      |           |                           |
| Nets                          | A net can be folded to make a 3D shape                                                                     |           |                           |
| Volume                        | For a cuboid<br>Volume = length x breadth x height                                                         |           |                           |
| Compound<br>shapes            | To find the volume of a compound shape,<br>split it into regular shapes and add each<br>individual volume. |           |                           |



I think that I need to ...

### **Formulae**

### (NMM)

| Heading                                  | Description                                                                                              | Completed | I Can<br>Do this<br>☺ ☺ ⊗ |
|------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Formulae<br>in words                     | 1 sun 2 suns 3 suns<br>= 6 rays = 12 rays = 18 rays<br>Number of rays = 6 times number of suns<br>r = 6s |           |                           |
| Formulae<br>from<br>graphs               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    |           |                           |
| Solving<br>problems<br>using<br>formulae | Use a formula to find the solution of a problem.                                                         |           |                           |



#### **Percentages**

### (NMM)

| Heading                                                     | Description                                                                                                                                                                                  | Completed | I Can Do<br>this<br>☺ ☺ ⊗ |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|
| Changing<br>percentages<br>to fractions<br>and decimals     | $83\% = \frac{83}{100} = 0.83$                                                                                                                                                               |           |                           |
| Changing<br>percentages<br>to simplest<br>form<br>fractions | $85\% = \frac{85}{100} = \frac{17}{20}$                                                                                                                                                      |           |                           |
| Common percentages                                          | $10\% = \frac{1}{10}$ $25\% = \frac{1}{4}$ etc.                                                                                                                                              |           |                           |
| Percentages of quantities                                   | <i>use</i><br>$1\% = \frac{1}{100}$ $10\% = \frac{1}{10}$<br><i>e.g.</i><br>Find 7% of £60<br>$1\%$ of £60 = $\frac{1}{100} \times 60 = 0.6$<br><i>so</i> 7% of £60 = $0.6 \times 7 = £4.20$ |           |                           |
| Percentage<br>increase<br>And<br>decrease                   | A shop has increased all prices by 20%.<br>Kitkats were 35p. How much are they now ?<br>$10\% \times 35p = 3.5p$<br>$20\% \times 35p = 2 \times 3.5p = 7p$<br>New price is $35p + 7p = 42p$  |           |                           |
| Percentages<br>using the<br>calculator                      | Using the calculator to find percentages                                                                                                                                                     |           |                           |



#### Algebra 2

### (NMM)

| Heading              | Description                                          | Completed | I Can<br>Do this<br>☺ ≌ ⊗ |
|----------------------|------------------------------------------------------|-----------|---------------------------|
|                      | 2x+3=9 12 - $p = 3$                                  |           |                           |
|                      | e.g. $2x = 6$ $12 = 3 + p$                           |           |                           |
|                      | x=3 $p=9$                                            |           |                           |
| Solving<br>Equations | 10p-1=4 $5r = 25$                                    |           |                           |
|                      | $10p = 5$ $r = \frac{25}{5}$                         |           |                           |
|                      | $p = \frac{5}{10} = \frac{1}{2}$ $r = 5$             |           |                           |
|                      | e.g. When 32 is subtracted from <i>w</i> this leaves |           |                           |
| Using                |                                                      |           |                           |
| equations            | w - 32 = 21                                          |           |                           |
|                      | w = 53                                               |           |                           |
|                      | < means is smaller than                              |           |                           |
|                      | > means is greater than                              |           |                           |
| Inequations          | $\leq$ means is smaller than or equal to             |           |                           |
| •                    | $\geq$ means is greater than or equal to             |           |                           |
|                      | ea                                                   |           |                           |
|                      | $z+11 \ge 15$                                        |           |                           |
|                      | <i>z</i> ≥4                                          |           |                           |
|                      |                                                      |           |                           |
|                      | Solve the equation $3m+1>32$                         |           |                           |
|                      | on the set of numbers $\{0,1,2,3,4,5,6,7,8,9\}$      |           |                           |
| Inequations          | 3 <i>m</i> +11>32                                    |           |                           |
| on a set             | 3 <i>m</i> >21                                       |           |                           |
|                      | <i>m</i> >7                                          |           |                           |
|                      | Solution set $\{8,9\}$                               |           |                           |

