Strategy for factorising quadratics   ax2  + bx  +  c
  
    Warning  : Not all quadratics factorise !
    
      - Write down the factor pairs  of the coefficient of x2 in the  expression ,  a.
 
    
  
  
      - Write down the factor pairs of the constant  term, c.
 
  
      - List all possible combinations of these factor  pairs.
 
  
      - Pick the correct combination by cross  multiplying, adding and comparing with the coefficient of x in the expression, b.
 
      - Read across to get the contents of the brackets.
 
   
      - Check by expanding brackets and comparing all  terms with the original expression.
 
  
   
      - Write out solution 
 
    
   
    
   
     
     
     
  Worked examples
  
      Factorise  x2   + 4x +  3
  
  Read across, 
  so (x+1) in one bracket, (x+3) in the other.
  x2  + 4x +   3 = (x +  1 )( x + 3)
 
     Factorise  x2   + x - 6
  
   Read across, 
   so (x+3) in one bracket, (x-2) in the other.
   x2  + x -   6 = (x -  2 )( x + 3)
   
   
     Factorise  x2  - 3x - 10
  
    x2   - 3x - 10 = (x -  5 )( x + 2)
   
    Factorise  x2   - 7x - 8
  
     x2   - 7x - 8 = (x -  8 )( x + 1)
   
    Factorise  1 - x - 2x2 
      
    1 - x - 2x2  = (1+ x ) (1  -  2x)
   
  Factorise  6x2  + 23x + 10
 
    
 
    6x2  +  23x + 10   = (2x + 1 )( 3x + 10)
     
     
     Factorise  3x2  + 7x + 2
      
      3x2   + 7x  + 2 = (x +  2 )( 3x + 1) 
     
  Factorise  4x2  - 21x + 5
     
       4x2  -  21x  + 5   = (x - 5 )( 4x - 1) 
  
  
     
    
      
        - ax2  + bx  +  c  factorises into the form (   +    )(   +   ) 
 
        - ax2  -  bx +  c  factorises into the form (   -     )(   -   ) 
 
        - ax2  + bx  -  c   factorises into the form (    -    )(   +  ) 
 
        - ax2  -  bx  -  c  factorises into the form (   -     )(   +  )
 
      
     
    Alternative  method
    
    
    
  As an Amazon Associate I earn from qualifying purchases.
   
    
    
   
    
 
    
    
    
        
© Alexander Forrest